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Abstract 
 

Salient object detection (SOD) aims to identify the most visually prominent objects in 
images, crucial for tasks like image segmentation, visual tracking, autonomous 
navigation, and photo cropping. While SOD has been extensively studied in natural scene 
RGB images, detecting salient objects in remote sensing images remains underexplored 
due to varying spatial resolutions and complex scenes.  

This paper presents a novel framework for SOD called Multispectral Decomposition 
Network (MSD-Net) in remote sensing 3-band RGB images, combining Multispectral 
Decomposition and Frequency-based Saliency detection. The framework includes three 
key steps: (i) Multispectral Decomposition: Decomposing a 3-band RGB image into 32 
multispectral bands to enhance feature capture across spectral domains; (ii) Synthetic 
RGB Reconstruction: Using a new entropy-based measure to select the most informative 
bands in salient regions by analyzing frequency domain and constructing synthetic RGB 
image; and (iii) Saliency Fusion and Object Detection: training a segmentation network 
on the fusion of synthetic RGB image and input image for improved accuracy. 
Comprehensive evaluations of public datasets demonstrate that the proposed method 
performs better than state-of-the-art (SOTA) models and offers a robust solution for 
detecting salient objects in complex remote sensing images by integrating multispectral 
and frequency-based techniques. 
Keywords:  Saliency map, Object detection, Multispectral decomposition, Band selection, 
Remote sensing, Entropy.  
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Automatic monitoring systems utilizing remote sensing technologies, such as satellite and UAV 
imagery, have encountered significant challenges in recent years. Remote sensing image 
processing [1] has numerous applications, including environmental monitoring, surveillance, 
military operations, autonomous navigation, and visual tracking. Image content analysis is 
critical across all these applications, encompassing object detection, localization, segmentation, 
and classification. The complexities and challenges in these tasks stem from varying 
environmental conditions, inconsistent image quality, and the diverse range of objects or regions 
requiring analysis. To address these challenges, recent approaches have leveraged properties of 
the human visual system. Humans possess an innate ability to automatically identify regions of 
interest within complex scenes through the visual attention mechanism. Inspired by this capability, 
salient object detection (SOD) enables computers to simulate this behavior, allowing them to 
detect the most prominent and important objects or regions in a scene automatically. SOD's 
adaptability and efficiency make it valuable in various applications, including foreground 
annotation, image enhancement, segmentation, image quality assessment, and video 
summarization.  
 
 

Fig. 1. Examples of SOD. Input and expected outputs are in the first and second rows, respectively. 

 
While recent advances in signal processing have somehow solved these issues by allowing 

systems to detect predefined classes of objects with high accuracy, a more intricate problem arises 
in saliency object detection (SOD). Unlike standard detection tasks, where the system is searching 
for known objects, SOD involves identification of unknown objects or regions of interest [2]. Some 
example images of salient objects and their corresponding masks are illustrated in Figure 1.  In 
[3], the authors have conducted an excellent review of the challenges in SOD and existing 
solutions, as well as their pros and cons. While SOD has been extensively studied in natural scene 
images, its application in remote sensing images brings more challenges, such as varying spatial 
resolutions, highly heterogeneous and complex scenes, and the presence of background clutter and 
noise in an image.  
Early studies in salient object detection (SOD) showed promising results by using basic, 
handcrafted features like image contrast and background information to identify important regions 
in images. These early methods provided a foundation for the development of SOD techniques, 
and a detailed review of these non-deep learning approaches can be found in [4]. An interesting 
method proposed by [5] involved extracting spectral residuals from the frequency domain by 
analyzing the log spectrum of the image. This process helped to create a saliency map in the spatial 
domain. However, these methods had some limitations: (i) they struggled with complex textures 
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and fine details, which led to blurred results, and (ii) it was sensitive to noise and image artifacts, 
which affected their accuracy. Another recent algorithm, based on image contrast, was proposed 
by [6]. This method used global contrast to detect saliency by separating large objects from their 
surroundings. It assigned similar saliency values to similar regions, which allowed the entire object 
to be highlighted evenly. The saliency of each region was mainly based on its contrast with nearby 
areas, while distant contrasts had less influence. Although this method had difficulties with low 
image contrast, it was hard to distinguish objects from their backgrounds. These early methods 
were limited, especially in handling complex textures and low-contrast images. Further 
advancements were needed to improve their effectiveness and reliability. 

With the success of deep learning technologies in computer vision, an increasing number 
of deep learning-based SOD methods [7] have emerged. Early deep SOD models generally utilized 
multi-layer perceptron (MLP) classifiers to predict saliency scores based on deep features 
extracted from individual pixels. These models significantly outperformed traditional, non-deep 
learning SOD methods. However, the MLP-based models were limited in their ability to capture 
spatial information effectively, as they lacked the structure to account for spatial dependencies 
across the image. 

 

 
Inspired by the success of fully convolutional networks (FCNs) [8] in semantic segmentation, 

more recent deep SOD methods have shifted toward using FCN-based architectures. These 
approaches incorporate advanced backbones like VGGNet [9], ResNet [10], and MobileNet [11], 
allowing end-to-end spatial saliency representation learning. By leveraging the strengths of these 
convolutional networks, modern SOD models can efficiently predict saliency maps while 
maintaining spatial coherence, significantly improving both accuracy and computational 
efficiency compared to earlier methods. Visual transformer-based architectures, such as ViT [13], 
have recently demonstrated significant potential in segmentation tasks. Several methods have 
leveraged these architectures to propose transformer-based saliency detection approaches [14]. 
Furthermore, novel advancements in convolutional networks have emerged, achieving state-of-
the-art (SOTA) performance in salient object detection. For instance, GSANet [15] introduced the 
Semantic Detail Embedding Module (SDEM), which explores the relationships between multi-
level features. It adaptively combines shallow texture details with deeper semantic information to 
efficiently aggregate information entropy in salient regions. Despite these advancements, these 
architectures have limitations, such as the quadratic computational complexity of visual 
transformers and the dependency on large-scale pixel-wise human annotations, making them less 
practical in specific scenarios. To develop effective SOD methods, it is crucial to address the 
complexities of feature extraction, minimize irrelevant data, and enhance precision in challenging 
environments such as low-light conditions, complex backgrounds, or high-noise environments. 
Table 1 summarizes the limitations of existing approaches. 

Table 1. Existing methods and limitations. 

 SRS GCR Conv-
NN 

ViT 
MSD-

Net 

Simple and efficient + + - - + 
Can handle complex structures - + + + + 

Robust to noise and contrast 
variations + - + + + 

High accuracy - - + + + 
Does not require large training data + + - - + 

Low computational complexity + + + - + 
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This paper aims to overcome the primary limitations of current SOD methods by improving 
feature extraction and precision to provide a robust solution for saliency detection across diverse 
and complex environments. The key contributions of our work include: 

1. Novel Entropy-Based Band Selection Measure to quantify the information within each 
spectral band regarding salient objects. It guides the reconstruction of a synthetic RGB 
image, enhancing the visibility and clarity of salient objects compared to the original 
image. 

2. Novel Framework for salient object detection in remote sensing applications, leveraging 
multispectral decomposition and spectral frequency analysis. Specifically:  

a. We employ a multispectral decomposition technique to distribute the image's 
information across various spectral bands, effectively filtering out irrelevant details 
such as noise, background clutter, or non-salient objects and retaining only pertinent 
information for the segmentation process.  

b. We integrate the selected spectral bands with a segmentation network fused with the 
original image, improving the network's capacity to identify and delineate salient 
objects accurately. 

3. The presented Method has been rigorously evaluated against several SOTA approaches 
using performance metrics and benchmark datasets. Furthermore, we tested its 
performance on additional image sets, demonstrating the framework's generalization 
capability across different domains and environmental conditions.  

 
This comprehensive evaluation provides (i) strong evidence of the developed saliency detection 
method's effectiveness and robustness and (ii) demonstrates improved precision and adaptability 
in various contexts. This adaptability ensures that MSD-Net can be effectively applied in diverse 
and complex environments. 

 
 
2.  Framework for Image Enhancement and Segmentation 
 
The proposed framework begins with a histogram equalization-based enhancement applied to the 
input image to improve its contrast, followed by gamma correction to adjust the brightness by 
raising the pixel values to the power of gamma. This pre-processing step enhances visibility and 
prepares the image for further analysis. 

The core algorithm is divided into two main branches. The first branch generates a guidance 
saliency map, which provides high-level information about potential object locations and shapes 
while guiding further processing. The second branch decomposes the image into multiple spectral 
bands, distributing information across different bands to facilitate the selection of relevant data 
while minimizing noise or irrelevant details that could hinder the detection task. The next phase 
involves band selection, where the framework measures the similarity between the guidance 
saliency map and each spectral band. The top three bands from the "R," "G," and "B" spectrums 
are selected based on their relevance and combined to create a synthetic RGB image. This 
synthesized image is then summed with the original input image and passed to the segmentation 
network, which produces the final output mask, indicating the segmented regions of interest. 
 Fig. 2 illustrates the overall workflow of the framework. The following chapters explain each 
component's role in image enhancement and segmentation. 
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2.1 Preprocessing Step: Enhancement of an Image 
The goal of image enhancement techniques is to improve the characteristics and quality of an 
image so that the resulting image looks better than the original when evaluated against specific 
criteria. Image enhancement is crucial in various image processing applications, including digital 
photography, medical image analysis, computer vision, remote sensing, object recognition, optical 
character recognition, fingerprint recognition, industrial automation, face recognition, and 
scientific visualization. It serves as a vital preprocessing step for numerous image-processing 
applications and vision systems [16].  Several image enhancement algorithms have been developed 
recently [16-24], which can be categorized into two main classes: spatial-domain processing and 
transform-domain processing. Spatial-domain methods operate directly on pixel values. 
Representative methods in this category include gray-level histogram techniques, histogram 
equalization, adaptive histogram equalization like Contrast Limited Adaptive Histogram 
Equalization (CLAHE), adaptive gamma correction, human visual system-based methods, unsharp 
masking, ratio image methods, fuzzy entropy approaches, empirical mode decomposition-based 
methods, partitioned iterated function systems, linear filters, among others (see details in [25]). 
 

 
Fig. 2. Overall architecture and workflow of MSD-Net. 

 

This article uses a combined CLAHE and gamma correction method as a preprocessing step. 
 

𝐼𝐼𝑒𝑒𝑒𝑒ℎ = �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐼𝐼)�
𝛾𝛾

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛾𝛾 = 1.5. 
 
where 𝐼𝐼 is the input image, and 𝐼𝐼𝑒𝑒𝑒𝑒ℎ is the enhanced output. This approach leverages the strengths 
of both techniques to enhance image quality effectively: 
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1. Contrast Limited Adaptive Histogram Equalization (CLAHE) [25]: CLAHE improves 
local contrast by applying histogram equalization to small regions (tiles) of the image rather 
than the entire image. This method limits contrast amplification to prevent noise 
enhancement, making fine details more visible without over-saturating the image. 

2. Gamma Correction [26]: Gamma correction adjusts the brightness of an image by 
applying a non-linear transformation to the pixel intensity values. It corrects the non-linear 
way humans perceive light and color, ensuring that the image has appropriate luminance 
levels—neither too dark nor too bright. 

 
Combined benefit: By integrating CLAHE and gamma correction, we aim to enhance both the 
local contrast and overall brightness of the image: 
 

•  Step 1: Apply CLAHE to the input image to enhance local contrast. This step emphasizes 
edge details and textures, making subtle features more discernible. 

•  Step 2: Perform gamma correction on the CLAHE-processed image. Adjust the gamma 
value to fine-tune the image brightness according to the application's specific requirements. 

 

 

Fig. 3. Input image; CLAHE enhanced; gamma corrected with different gamma parameters. 

 
This combined method enhances fine details while maintaining proper brightness and contrast 
levels, making an image more suitable for further processing or analysis information during 
decomposition and more accurate detection of proposal regions by the spectral residual algorithm. 
Figure 3 demonstrates the effect of CLAHE and gamma correction with different gamma 
parameters. Experiments showed the best gamma to be selected 1.5, as it does not over-enhance 
or under-enhance the image. In Fig. 4, spectral residual saliency algorithm is used before (b) and 
after enhancement (c). We can observe the difference of saliency masks compared to ground truth 
masks. This difference shows the effect of the enhancement preprocessing part. 
 

2.2 Spectral Residual Saliency Object Detection   
 
The algorithm [5] is designed to detect salient regions in an image by analyzing its spectral 
properties. The key intuition behind this approach is that salient regions are distinguished from the 
surrounding background in terms of their spectral characteristics. By working in the spectral 
domain (using the Fourier Transform), the algorithm can efficiently highlight these regions by 
identifying and manipulating the spectral residual, which captures the unique, non-redundant 
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information in the image. The algorithm begins with median blurring with kernel size 5 to reduce 
noise while preserving edges. Next is the Fourier Transform step: the image 𝐼𝐼(𝑥𝑥,𝑦𝑦) is transformed 
into the frequency domain: 
 

𝐹𝐹(𝑢𝑢, 𝑣𝑣) = 𝐹𝐹�𝐼𝐼(𝑥𝑥,𝑦𝑦)� 

yielding complex values with amplitude and phase information. A logarithm transformation is 
applied to the magnitude spectrum, followed by smoothing kernel convolution. 

𝐶𝐶(𝑢𝑢, 𝑣𝑣) = |𝐹𝐹(𝑢𝑢, 𝑣𝑣)| 
 

𝐶𝐶(𝑢𝑢, 𝑣𝑣) =𝑙𝑙𝑙𝑙𝑙𝑙 �𝐶𝐶(𝑢𝑢, 𝑣𝑣)�  
 

𝑆𝑆(𝑢𝑢, 𝑣𝑣) = ℎ ∗ 𝐶𝐶(𝑢𝑢, 𝑣𝑣) 
 

 
Fig. 4. Spectral residual saliency (SRS) detection: (a) input image, (b) output of SRS w/o enhancement, (c) output of 
SRS after enhancement, (d) ground-truth mask. 

 
The spectral residual is computed by subtracting the smoothed spectrum from the original and is 
exponentiated and combined with the original phase to reconstruct the frequency domain: 
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𝑅𝑅(𝑢𝑢, 𝑣𝑣) = 𝐶𝐶(𝑢𝑢, 𝑣𝑣) − 𝑆𝑆(𝑢𝑢, 𝑣𝑣), 
 

𝑀𝑀(𝑢𝑢, 𝑣𝑣) = 𝑒𝑒𝑅𝑅(𝑢𝑢,𝑣𝑣),    𝐹𝐹′(𝑢𝑢, 𝑣𝑣) = 𝑀𝑀(𝑢𝑢, 𝑣𝑣) ⋅ 𝑒𝑒𝑗𝑗𝑗𝑗(𝑢𝑢,𝑣𝑣), 
 

𝑂𝑂𝑢𝑢𝑂𝑂𝑂𝑂𝑢𝑢𝑂𝑂(𝑢𝑢, 𝑣𝑣) = 𝑙𝑙(𝑥𝑥) ⋅ 𝐹𝐹−1�𝐹𝐹′(𝑢𝑢, 𝑣𝑣)�. 

An inverse Fourier transform followed by a gaussian filter 𝑙𝑙(𝑥𝑥) with (𝜎𝜎 = 8) generates the 
Saliency Map. There is a final optional step, which subtracts saliency map from original image to 
get an anomaly map, but we do not use that step in our article. Fig. 4 illustrates some examples of 
spectral residual algorithms. 

2.3 Multispectral Decomposition 
 
Multispectral and hyperspectral images play a crucial role in understanding the physical attributes 
of objects in an image. While RGB images are limited to three channels (red, green, and blue), 

 
Fig. 5. From left to right: input image, multispectral decomposition bands (indices 1, 7, 15, 22, 30) with entropy 
measures below, Synthetic reconstructed RGB 

 
multispectral images capture data across a broader range of wavelengths, typically tens to 
hundreds of spectral bands. This expanded range allows for a more detailed analysis of material 
properties, surface textures, and object distinctions that might not be visible in standard RGB 
images. 

As obtaining multispectral images can be costly, a significant amount of research aimed at 
developing methods to predict multispectral information from standard RGB images. Therefore, 
considerable interest has been in constructing datasets that facilitate RGB-to-multispectral 
conversions (predictions) through deep learning and other techniques [27]. One such method is the 
Multi-stage Spectral-wise Transformer (MST++) [28], known for its high accuracy and low 
computational complexity. The MST++ architecture is based on a convolutional autoencoder 
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(CAE) design consisting of multiple stages of spectral-wise transformers. Each stage includes an 
encoder, a bottleneck, and a decoder, with spectral-wise attention blocks (SABs) and 
deconvolution layers. Skip connections between the encoder and decoder are employed to preserve 
important spatial information throughout the transformation process. The output of this module 
consists of 32 spectral bands, with the first 11 bands capturing information from the red channel, 
the next 11 bands for the green channel, and the remaining 10 bands for the blue channel.  

MST++ is employed as the decomposition network in this work, which converts an RGB 
image into 32 spectral bands, providing a richer, more informative spectral representation of the 
scene. This arrangement allows for an efficient distribution of information across the channels, 
ensuring that the decomposition captures subtle variations and essential features in each color 
channel. Fig. 5 shows an example of anRGB image and some corresponding bands after 
conversion to a multispectral image. It is easy to see that certain bands contain more information 
about salient objects than others. The goal is to identify and select the most informative bands to 
be used as supplementary input for the segmentation module [29]. It can reduce the noise and other 
information that can bring false positives during the segmentation. 
 

2.4 Novel Entropy-Based Band Selection Measure 
 

Definition 1: To efficiently identify the most informative spectral bands, we compute the entropy-
based band selection measure (𝐶𝐶) for each band 𝑘𝑘 using the following formula: 
 

𝐶𝐶(𝑘𝑘) = ��𝑤𝑤𝑖𝑖𝑗𝑗𝐶𝐶𝑖𝑖𝑗𝑗𝑘𝑘
𝑀𝑀

𝑗𝑗=0

𝑁𝑁

𝑖𝑖=0

 , 

 

 where the entropy  𝐶𝐶𝑖𝑖𝑗𝑗𝑘𝑘  of each block is calculated.  
 

𝐶𝐶𝑖𝑖𝑗𝑗𝑘𝑘 = 20�−𝑂𝑂𝑖𝑖𝑗𝑗𝑘𝑘 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑂𝑂𝑖𝑖𝑗𝑗𝑘𝑘 � �, 

● 𝑂𝑂𝑖𝑖𝑗𝑗𝑘𝑘 ≈ 0.5: indicates a balance between 𝐶𝐶𝐶𝐶 and 𝐷𝐷𝐶𝐶 components, meaning the block has both 
structure (variation) and intensity, which suggests high information content. 

● 𝑂𝑂𝑖𝑖𝑗𝑗𝑘𝑘 ≈ 0: indicates that the block is homogeneous with slight variation (dominated by DC), 
meaning low information content. 

● 𝑂𝑂𝑖𝑖𝑗𝑗𝑘𝑘 ≈ 1: indicates that the block is dominated by high-frequency noise or excessive variation 
without meaningful structure (dominated by 𝐶𝐶𝐶𝐶), also leading to low information content. 

𝐶𝐶𝑖𝑖𝑗𝑗𝑘𝑘  is the entropy calculated for the ij-th block of the k-th band, and  𝑤𝑤𝑖𝑖𝑗𝑗 is the average value of 
the corresponding 𝑖𝑖𝑖𝑖 block in the guidance map. 𝐶𝐶𝑖𝑖𝑗𝑗𝑘𝑘  is calculated with the following steps: 
 
1. For each block 𝐵𝐵𝑖𝑖𝑗𝑗 of the image, a Fourier Transform is performed to obtain the 𝐷𝐷𝐶𝐶 and 𝐶𝐶𝐶𝐶 

components. 
𝐹𝐹𝑖𝑖𝑗𝑗 = 𝐹𝐹𝐹𝐹𝐹𝐹�𝐵𝐵𝑖𝑖𝑗𝑗�,   𝐹𝐹𝑖𝑖𝑗𝑗

𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑂𝑂(𝐹𝐹𝑖𝑖𝑗𝑗) 
 

𝐷𝐷𝐶𝐶𝑖𝑖𝑗𝑗 = |𝐹𝐹𝑖𝑖𝑗𝑗
𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖(0,0)|𝛽𝛽 ,     𝐶𝐶𝐶𝐶𝑖𝑖𝑗𝑗 = � |𝐹𝐹𝑖𝑖𝑗𝑗

𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥,𝑦𝑦)|𝛼𝛼
𝑘𝑘

𝑥𝑥=1,𝑦𝑦=1

  

 
𝛼𝛼 and 𝛽𝛽 coefficients are selected experimentally at 0.6 and 2, respectively.  
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2. A probability value 𝑂𝑂𝑖𝑖𝑗𝑗𝑘𝑘  is computed from the ratio of the 𝐶𝐶𝐶𝐶 and 𝐷𝐷𝐶𝐶 components from 𝑘𝑘-th 

band. 
 

𝑂𝑂𝑖𝑖𝑗𝑗𝑘𝑘 =
𝐶𝐶𝐶𝐶𝑖𝑖𝑗𝑗𝑘𝑘

𝐶𝐶𝐶𝐶𝑖𝑖𝑗𝑗𝑘𝑘 +  𝐷𝐷𝐶𝐶𝑖𝑖𝑗𝑗𝑘𝑘
 . 

 
After calculating 𝐶𝐶(𝑘𝑘) for each 𝑘𝑘-th band, the top 3 bands are selected with the highest scores from 
each range (1-10, 11-21, 22-32). The selected bands construct a new synthetic RGB image that 
captures the salient object information more effectively than the original image. Some example 
bands and their corresponding entropy scores are illustrated in Figure 5. The final column shows 
the RGB image reconstructed from the selected bands. This synthetic image and the original image 
are merged by taking their average, as some features can be lost in synthetic RGB, which can be 
crucial for segmentation.  
 
2.5 Segmentation Network Module 
 
For the segmentation module, the merged image is passed through DeepLabV3 [30] network with 
a ResNet50 backbone. DeepLabV3 is a well-known standard in image segmentation tasks. It is 
part of a family of segmentation architectures that employ atrous convolution and multi-scale 
context aggregation to capture fine details in images. These architectures are widely used due to 
their efficiency and accuracy in pixel-level predictions. In this work, the network was chosen 
primarily to validate the concept of the proposed framework rather than to focus on optimizing 
segmentation performance, as it provides a robust and reliable baseline for evaluating the 
effectiveness of the approach. 
 
2.6  Loss Functions 

For training the network, we utilize two loss functions: Binary Cross Entropy (BCE) and Mean 
Squared Logarithmic Error (MSLE).  

𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 =
1
𝑁𝑁
�𝑦𝑦𝑖𝑖 ⋅ log(𝑂𝑂𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖) ⋅ log (1 − 𝑂𝑂𝑖𝑖)
𝑁𝑁

𝑖𝑖=0

, 

𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵 =
1
𝑁𝑁
�(log(1 + 𝑂𝑂𝑖𝑖) − log (1 + 𝑦𝑦𝑖𝑖))2
𝑁𝑁

𝑖𝑖=0

 . 

BCE is commonly used for binary classification tasks, and in our case, it helps classify all pixels 
as either salient or non-salient regions. MSLE, similar to Mean Squared Error (MSE), introduces 
a logarithmic transformation to reduce the impact of large outliers, effectively treating them on the 
same scale as smaller values. This property makes MSLE particularly useful for creating a 
balanced model that is robust to noise and outliers. 
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2. Experimental Results 
 
3.1 Dataset 
 
To train and evaluate the proposed framework, we selected the most suitable benchmark dataset 
for optical remote sensing SOD. The first publicly available SOD dataset was ORSSD, introduced 
by [31]. It includes 600 training and 200 testing images, each with pixel-wise annotations for 
salient regions. Despite its importance to the SOD field, this dataset had limitations, particularly 
due to the small amount of data. To address this issue, [15] introduced an extended version called 
the EORSSD dataset. This dataset adds 1,200 optical remote sensing images collected from 
Google Earth to the existing ORSSD dataset, encompassing more complex scenes, objects, and 
regions. Pixel-wise saliency maps were generated using Photoshop tools, resulting in overall 
2,000 images with ground-truth annotations (1,400 for training and 600 for testing). The EORSSD 
dataset presents several challenges: (i) multiple objects can appear in one single image, (ii) object 
sizes in optical remote sensing imagery (RSI) vary significantly due to the diverse satellite and 
airborne imaging platforms, making small object detection particularly difficult, and (iii) the 
dataset 
 
 

Fig. 6. Statistics about datasets object types, sizes, and counts. 

includes a variety of objects such as buildings, streets, ships, aircraft, cars, water bodies, islands, 
and roads. In summary, the EORSSD dataset is diverse and challenging, making it a valuable 
resource for training and evaluating SOD models in complex remote sensing scenarios. Some 
statistics about the dataset are presented in Figure 6.  

We evaluate MSD-Net on other remote sensing scenarios as well. To show the 
generalizability of the proposed method, we also evaluate it on images from the NWPU-RESISC45 
[32] dataset, which was initially intended for remote sensing image scene classification. Besides 
that, we show the performance on solar panels images taken from the PV01 dataset [33], without 
providing any training example to the network.  
 

3.2 Evaluation Metrics 
 
To quantitatively evaluate the proposed method, we calculate four metrics, with different settings: 
adaptive, mean, and max S-measure (𝑆𝑆𝛼𝛼) [34], mean absolute error (MAE), adaptive, mean and 
max E-measure (𝐶𝐶𝜉𝜉) [35] and adaptive, mean and max F-measure (𝐹𝐹𝛽𝛽) [36]. The S-measure 
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calculates object similarity considering the structural similarity between the predicted and ground 
truth masks.  
 

𝑀𝑀𝐶𝐶𝐶𝐶 =
1
𝑁𝑁𝑀𝑀

�� |𝑆𝑆𝑆𝑆𝑙𝑙(𝑖𝑖, 𝑖𝑖)
𝑀𝑀

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

− 𝐺𝐺𝐹𝐹(𝑖𝑖, 𝑖𝑖)|,    𝑆𝑆𝛼𝛼 =  𝛼𝛼 ×  𝑆𝑆𝑂𝑂 + (1 − 𝛼𝛼) × 𝑆𝑆𝑟𝑟 

 

𝐶𝐶𝜉𝜉 =
1
𝑁𝑁𝑀𝑀

��𝜉𝜉𝑠𝑠(𝑖𝑖, 𝑖𝑖)
𝑀𝑀

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

,     𝐹𝐹𝛽𝛽 =
(1 + 𝛽𝛽2) × 𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑙𝑙𝑃𝑃 × 𝑅𝑅𝑒𝑒𝑃𝑃𝑆𝑆𝑙𝑙𝑙𝑙

𝛽𝛽2 × 𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑙𝑙𝑃𝑃 + 𝑅𝑅𝑒𝑒𝑃𝑃𝑆𝑆𝑙𝑙𝑙𝑙
 

 
𝛼𝛼 = 0.5, 𝑆𝑆𝑂𝑂 and 𝑆𝑆𝑟𝑟 are object and region similarities, respectively. MAE calculates the mean 
absolute distance of predicted and actual saliencies. The E-measure is an improved metric 
designed to calculate the degree of correspondence between global averages and individual local 
pixels. 𝜉𝜉𝑠𝑠 is the enhanced alignment matrix, capturing pixel-level matching and image-level 
statistics. Finally, F-measure calculates the weighted harmonic mean of Precision and Recall. 𝛽𝛽 
is the weight coefficient and is set at 0.3 in our experiments. For each measure, we have three 
settings: adp (adaptive), mean, and max.   
 

 
Fig. 7. Comparison of MSD-Net with others. (a) input image, (b) SRS, (c) GCR, (d) DeepLabV3, (e) GCANet, (f) 
MSD-Net, (g) ground truth. 
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Table 2. Quantitative comparison of proposed method against others on eorssd dataset. 
 

 
3.3. Experiments Setup 
 
For a fair comparison, we train all the deep learning-based methods in our dataset split and evaluate 
with the same code and pipeline. For all training, the Adam optimizer was used with a learning 
rate 10-4. Two loss functions have equal coefficients during the training. Random horizontal and 
vertical flips, rotations, and shifts were used for data augmentation. Batch size and epochs were 
selected 16 and 200, accordingly. The patch size for the Fourier Transform was set to K = 16, and 
for the entropy measure, K = 10. These parameter values were chosen based on extensive computer 
simulations and experimental results. 
 
3.4 Comparison with Other Methods 
 
For the comparison with other methods, we choose 2 non-deep learning-based algorithms, 
including spectral residual SOD (SRS) [5] and Global Contrast-based SOD (GCR) [6]. While they 
have successfully found salient objects in some simple cases, they fail if some challenges are 
present in images, such as complex background scenes or low contrast. To this end, we also  
compare 2 deep learning based SOTA models: one for general semantic segmentation task 
(DeepLabV3) [30], and another trained exactly for SOD task (GCANet) [15]. As mentioned, for 
fair comparison, we use the code they published and train ourselves on our data and our experiment 
settings. Despite the promising results and improvements compared with non-deep learning 
methods, they still have some limitations. Visual comparison of the proposed framework with 
other methods is presented in Fig. 7. On the contrary, MSD-Net has successfully detected the 
salient objects and has better boundaries, compared to those having non clear object boundaries, 
false positive detected pixels, as well as missing some parts of objects. While SRS (Fig. 7-b) 
detected the approximate location of salient objects, it smoothed them and lost a lot of details. On 
the contrary, GCR (Fig. 7-c) has not lost any details and processed textures well, but it has a lot of 
false positive cases. Deep learning-based methods have shown better performance. [15] and [30] 
have false positive cases on the first and fourth images and missed one object in the second image 
and part of the object in the third image. The fifth image is smooth, but details are lost in both 
cases. On the other hand, MSD-Net successfully managed to detect better masks of salient objects. 
Besides qualitative comparison, we also evaluate our method quantitatively using the metrics 
defined above. Table 2 shows that MSD-Net shows better performance compared with others on 
all metrics.  

We demonstrate the generalizability of the MSD-Net by running it on other images taken 
from the dataset introduced in [32]. Although this dataset does not provide ground truth masks, as 
it is not designed for saliency object detection (SOD), we observe visually good masks on various 
image types. While quantitative evaluation is not possible in this case, we can conduct a qualitative 
assessment (see Fig. 8-a). We also evaluate the performance of our method on out-of-distribution 

 S-Measure ↑ MAE ↓ adpEM ↑ meanEM ↑ maxEM ↑ adpFM ↑ meanFM ↑ maxFM ↑ 

SRS 0.485 0.178 0.647 0.524 0.612, 0.323 0.192, 0.253 

GCR 0.568 0.158 0.484 0.577 0.670 0.204 0.330 0.403 

DeepLabV3 0.826 0.018 0.826 0.874 0.902 0.602 0.682 0.711 

GSANet 0.801 0.025 0.834 0.856 0.871 0.616 0.67 0.689 

MSD-Net 0.841 0.017 0.854 0.881 0.912 0.637 0.703 0.731 
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solar panel images (Fig. 8-b), demonstrating strong generalization capability. In future work, we 
aim to further improve the accuracy and efficiency of panel detection. 
 

 

Fig. 8. Predictions of the MSD-Net on samples of (a) NWPU-RESISC45 dataset, (b) PV01 dataset. 

 
3.5 Ablation Study 
 

To investigate the effectiveness of each component, we first train the segmentation network 
without applying any pre-processing or synthetic RGB reconstruction steps, establishing a 
baseline. We then incrementally add components to the pipeline. Second, we integrate a single 
branch using the spectral residual saliency map, which is generated and fused with the input image 
to guide the segmentation network in more easily identifying salient objects. This addition 
improves the metrics a little. Finally, we incorporate the decomposition module, which results in 
 
Table 3. Ablation study analysis 
 

 S-Measure ↑ MAE ↓ adpEM ↑ meanEM ↑ maxEM ↑ adpFM ↑ meanFM ↑ maxFM ↑ 

Segm. only 0.826 0.018 0.826 0.874 0.902 0.602 0.678 0.711 

Segm. + guide 0.832 0.018 0.841 0.881 0.912 0.622 0.682 0.720 

MSD-Net 0.841 0.017 0.854 0.886 0.915 0.637 0.703 0.731 

 S-Measure ↑ MAE ↓ adpEM ↑ meanEM ↑ maxEM ↑ adpFM ↑ meanFM ↑ maxFM ↑ 

Segm. only 0.826 0.018 0.826 0.874 0.902 0.602 0.678 0.711 

Segm. + guide 0.832 0.018 0.841 0.881 0.912 0.622 0.682 0.720 

MSD-Net 0.841 0.017 0.854 0.886 0.915 0.637 0.703 0.731 
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the highest performance scores when using the full pipeline. The metric values for each scenario 
are presented in Table 3, demonstrating the contribution and effectiveness of each block and 
branch in MSD-Net. 
 

4. Conclusion 
In conclusion, this paper presents MSD-Net, a novel framework for salient object detection (SOD) 
in remote sensing RGB images. MSD-Net enhances feature representation and improves detection 
accuracy in complex remote sensing scenarios using multispectral decomposition and frequency-
based saliency detection techniques. Additionally, we introduce an entropy-based similarity 
measure for effective band selection and synthetic RGB reconstruction. Experimental results on 
the EORSSD dataset demonstrate that MSD-Net significantly outperforms state-of-the-art 
methods on public datasets. Furthermore, we evaluate the framework on various datasets and 
conduct an ablation study to analyze the contribution of each component. 
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Բազմասպեկտրալ տրոհում և հաճախականության վրա 
հիմնված շրջանակ հեռահաղորդակցման Պատկերներում 

ակնհայտ օբյեկտների հայտնաբերման համար 
 

Հայկ Ա․ Գասպարյան 

 

Երևանի պետական համալսարան, Երևան, Հայաստան 
e-mail: hayk.gasparyan@ysu.am 

 
Ամփոփում 

 
Ակնհայտ օբյեկտների հայտնաբերումը (SOD) նպատակ ունի 

լուսանկարներում հայտնաբերել ամենաակնառու օբյեկտները, ինչը 
կարևոր է այնպիսի խնդիրների համար, ինչպիսիք են` պատկերների 
սեգմենտացիան, տեսողական հետևումը, ինքնավար նավիգացիան և 
լուսանկարների կրճատումը։ Թեև SOD-ը լայնորեն ուսումնասիրվել է 
բնական տեսարանների RGB պատկերներում, հեռահաղորդակցման 
պատկերներում ակնառու օբյեկտների հայտնաբերումը մնում է 
չհետազոտված՝ փոփոխական տարածական չափերի և բարդ 
տեսարանների պատճառով:  

Այս հոդվածը ներկայացնում է SOD-ի նոր շրջանակ, որը կոչվում է 
Multispectral Decomposition Network (MSD-Net)՝ հեռահաղորդակցման 3-
շերտ RGB պատկերներում, որը համատեղում է բազմասպեկտրային 

https://doi.org/10.1109/ICCV.2017.487
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տրոհումը և հաճախականության վրա առաջնայնության 
հայտնաբերումը: Շրջանակը ներառում է երեք հիմնական քայլեր. (i) 
Բազմասպեկտրալ տրոհում. 3-շերտավոր RGB պատկերի տրոհում 32 
բազմասպեկտրային գոտիների՝ սպեկտրային տիրույթներում 
հատկանիշների գրավումը ուժեղացնելու համար; (ii) Սինթետիկ RGB-ի 
վերակառուցում. էնտրոպիայի վրա հիմնված նոր չափման կիրառում` 
նշանավոր շրջաններում առավել տեղեկատվական գոտիներ ընտրելու 
համար` վերլուծելով հաճախականության տիրույթը և կառուցելով 
սինթետիկ RGB պատկեր; և (iii) Saliency Fusion and Object Detection. 
սեգմենտավորման ցանցի ուսուցում վերակառուցված պատկերի և 
մուտքային պատկերի միաձուլման վրա՝ բարելավված ճշգրտության 
համար: Հանրային տվյալների հավաքածուների համապարփակ 
գնահատումը ցույց է տալիս, որ առաջարկվող մեթոդն ավելի լավ է 
գործում, քան ժամանակակից (SOTA) մոդելները և առաջարկում է կայուն 
լուծում բարդ հեռահաղորդակցման պատկերներում ակնհայտ 
օբյեկտները հայտնաբերելու համար՝ ինտեգրելով բազմասպեկտրային և 
հաճախականության վրա հիմնված տեխնիկաներ: 
Բանալի բառեր՝ ակնհայտության քարտեզ, օբյեկտների հայտնաբերում, 
բազմասպեկտրային տրոհում, գոտու ընտրություն, հեռահաղորդակցում, 
էնտրոպիա  

 
 
 
 

Мультиспектральное разложение и частотная основа для 
выделения заметных объектов на изображениях 

дистанционного зондирования 
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Аннотация 

 
Обнаружение заметных объектов (SOD) направлено на идентификацию 

наиболее визуально выделяющихся объектов на изображениях, что важно для 
задач таких, как сегментация изображений, визуальное отслеживание, 
автономная навигация и кадрирование фотографий. Хотя SOD активно 
изучалась в изображениях естественных сцен в RGB, обнаружение заметных 
объектов на изображениях дистанционного зондирования остается 
малоизученным из-за изменчивости пространственных разрешений и 
сложности сцен.  

В данной работе представлен новый фреймворк для SOD, называемый 
Сетью Мультиспектрального Разложения (MSD-Net) в 3-полосных RGB 
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изображениях дистанционного зондирования, объединяющий 
мультиспектральное разложение и обнаружение заметности на основе частот. 
Фреймворк включает три ключевых шага: (i) Мультиспектральное 
разложение: разложение 3-полосного RGB изображения на 32 
мультиспектральные полосы для улучшения захвата признаков через 
спектральные домены; (ii) Синтетическая RGB реконструкция: 
использование новой меры на основе энтропии для выбора наиболее 
информативных полос в заметных регионах путем анализа частотного домена 
и построения синтетического RGB изображения; и (iii) Слияние заметности и 
обнаружение объектов: обучение сегментационной сети на слиянии 
выбранных полос и входного изображения для повышения точности. 
Обширные оценки на публичных наборах данных показывают, что 
предложенный метод превосходит существующие модели и предлагает 
надежное решение для обнаружения заметных объектов на сложных 
изображениях дистанционного зондирования, интегрируя 
мультиспектральные и частотно-ориентированные техники. 
Ключевые слова: карта очевидности; обнаружение объектов; 
мультиспектральное разложение; выбор полосы; дистанционное 
зондирование; энтропия  
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