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Abstract

This paper presents a novel 2D convolutional layer motivated by the principles of
Partial Differential Equation (PDE) of Neural Interaction. Our objective is to leverage
this layer to enhance the classification accuracy of Deep Convolutional Neural Net-
works (DCNN) for various classification tasks. We place a particular emphasis on its
integration within the ResNet architecture, and we conduct experimental evaluations
on the CIFAR10 and STL10 datasets to validate its efficacy.
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1. Introduction

Deep Learning is a subfield of machine learning [1]. Neural networks simulate the learning
process of the human brain. This article explores the synergy between deep learning and
PDEs, specifically in the context of enhancing image classification accuracy using ResNet
architecture [2].

PDEs hold significant importance in the realms of sound, image, and video processing
[3]. Their application in image processing primarily revolves around noise removal and
reconstruction[4, 5]. The foundational models relying on PDEs are adept at noise reduction
while simultaneously maintaining the image integral features.

Transitioning our focus to DCNNs, challenges like gradient vanishing and gradient ex-
ploding have often been obstacles in training Neural Networks effectively. ResNet, or Resid-
ual Network, addresses such issues. At its core, the ResNet architecture employs Residual
Blocks. These blocks incorporate skip connections, bypassing selected layers, offering a
unique approach to handling these challenges. We will delve deeper into the intricacies of
the ResNet architecture in the ensuing sections.
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Fig. 1. Equivalent scheme for successive cylindrical segments of a dendritic

membrane of a neural cell.

The essence of this article lies in optimizing DCNNs, specifically ResNet, by leveraging
the capabilities of PDEs. An insightful source for our research is Bresslof’s book, which
introduces the Cable Equation [6](Section 1.4). The cable equation describes the variation
of potential in neural cells.

Our principal objective is to harness the prowess of PDEs in image processing and inte-
grate it within DCNNs, particularly with ResNet.

2. Mathematical Background

The main focus of this article is on the application of a CNN layer, obtained from Cable
equation for classification tasks. As it was mentioned, the cable equation is an important
mathematical model of the potential transmission in neural cells. The equivalent scheme is
described in Fig. 1.

Taking into account that the transmission of potentials, that is, the transmission of
information in neuronal cells, is governed by the equation described above, we propose to
use the discretization of this equation in the construction of a neural network. According
to the Book designations, the potential transmission in a neuron cell is described by the
following equation:

τm
∂v(x, t)

∂t
= −v(x, t) + λ2

m

∂2v(x, t)

∂x2
+ rmIext(x, t), t ≥ 0, (1)

where v is a membrane potential at position x along a cable at time t, Cm is a capacity per
unit of the membrane, R is a resistance of the intracellular fluid, Rm is a cell membrane resis-
tance, a is a cable radius, τm = RmCm is a membrane time constant and λm = (Rma/2R)1/2

is a membrane space constant.
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Therefore, we propose to apply the discretization of this equation in a neural network.
We will employ the grid method to discretize this equation. The grid method is a fundamen-
tal technique that transforms PDEs into discrete computational forms. PDEs are converted
into algebraic equations by segmenting space into a grid of discrete points, facilitating inte-
gration. The distribution of these points establishes the foundation upon which the PDEs
are approximated using the finite difference method. The discretized form of the formula is
obtained through the finite difference method.

In schematic form, Equation (1) takes the following form:

∂u

∂t
= α∆u− u

or
ut = α(uxx + uyy)− u.

Replace the partial derivatives with their finite difference approximations

ut+1
i,k − ut
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From (2) follows

ut+1
i,k = ut

i,k(1− τ) +
ut
i−1,k − 2ut

i,k + ut
i+1,k

Φ2
+

ut
i,k−1 − 2ut
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i,k+1

Ψ2
, (3)

where

Φ2 =
h2
x

α · τ
, Ψ2 =

h2
y

α · τ
.

The resulting scheme is called an explicit scheme because the solution’s value at the given
moment t+ 1 is strictly obtained by the solution’s value in the previous t moment.
Equation (3) is equivalent to

ut+1
i,k = (1− τ) · ut

i,k + (P1 + P2) · U, (4)

where
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P1 and P2 are defined as two-dimensional, weighted convolution operators for the neural

network with weights Φ, Ψ, and τ is also a weight. (3) represents our CNN layer, ut+1
i,k is our

present layer, and ut
i,k is our previous layer, which we will call a cable equation layer.

3. Architecture

In this paper, we introduce a new component within DCNN, which we call a cable equation
layer, and it is designed to be trainable. Our new layer usage highlights the features of
the image, and since the layer is trainable, it allows us to optimize its configuration for
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image processing. Traditional DCNNs begin with a standard convolutional layer. Here we
introduce our cable equation layer at the outset, which enables us to process the image before
the other layers of the network process it further. We investigate the efficacy of our layer in
two convolutional blocks: first, we integrate the cable equation layer into a standard CNN
Block, and second, we integrate the cable equation layer into the ResNet Block (see Fig. 2).

Fig. 2. Left: Standard CNN block, Right: ResNet block.

4. Experiments

The CIFAR10 dataset [7] is used for our experiments, consisting of 50K training images and
10K testing images. Input images have 3 channels and a size of 32× 32, and use the STL10
dataset[8], which consists of 5K training images and 8K testing images, and have 3 channels
and a size of 96 × 96. Network architecture will be presented in the table. Our Cable
Equation layer incorporates BatchNorm [9] and employs the ReLU activation function. We
conducted two experiments incorporating the Cable Equation layer. In the first experiment,
we introduced the Cable Equation layer along with the preceding layers before the core
Neural Network. For the second experiment, we crafted a residual block infused with a
Cable Equation layer, iteratively applied one or more times, strategically positioned prior to
the Neural Network. Table 1 below is a description of the architecture of the original and
experimental models for the CIFAR10 dataset.

Initially, we implement the k-cable equalization layer, followed by 3x3 convolutions gen-
erating 64 output channels. Subsequently, the architecture encompasses 8 ResNet Blocks,
partitioned into four sections, each with output channels (64, 128, 256, 512). The sequence
continues with 4x4 averaging for CIFAR10 and 12x12 for STL10, a fully connected layer,
and culminates with LogSoftmax activation. We used this architecture for both datasets.
For the CIFAR10 dataset, we initiate preprocessing steps before feeding the data into the
neural network. This involves padding each side with 4 pixels, followed by a random crop
of size 32x32. Additionally, a RandomHorizontalFlip operation is applied, and ultimately,
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the image is normalized using the means of (0.4914, 0.4822, 0.4465) and standard deviations
of (0.2023, 0.1994, 0.2010). These transformations are conducted on the training data. For
the test data, normalization is exclusively applied using the same means and standard devi-
ations. The outcomes for CIFAR10 are presented in Table 2.

Model Accuracy(%) Parameter cnt
Original 88.92 11181642

CabEqSdBl 1 89.41 11181675
CabEqSdBl 2 89.57 11181708
CabEqSdBl 3 89.4 11181741
CabEqRNBl 1 89.68 11181708
CabEqRNBl 2 89.83 11181774
CabEqRNBl 3 88.9 11181840

For the STL10 dataset, we employ preprocessing procedures tailored to its distinct char-
acteristics. To prepare the data for neural network input, we apply 4-pixel padding to all
sides, followed by a randomized crop of dimensions 96x96. Additionally, a RandomHorizon-
talFlip operation is implemented. Subsequently, the image is normalized using mean values
of (0.44671097, 0.4398105, 0.4066468) and standard deviations of (0.2603405, 0.25657743,
0.27126738). These transformations are integral to the training data, while for the test data,
normalization is consistently applied using the same mean and standard deviation parame-
ters. Table 3 shows the architecture for STL10. The outcomes for STL10 are presented in
Table 4.

Table 1. CIFAR10 dataset: From top to bottom: Original ResNet, ResNet with 1, 2, 3 CabEq

standard blocks, ResNet with 1, 2, 3 CabEqBl Residual Blocks. O. S. is the output shape after
each layer.

Table 2. The result of testing CIFAR10 dataset in Original ResNet and ResNet with Cable equation

standard blocks and Cable equation ResNet blocks.
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Model Accuracy(%) Parameter cnt
Original 73.625 11181642

CabEqSdBl 1 75.68 11181675
CabEqSdBl 2 75.33 11181708
CabEqSdBl 3 70.8 11181741
CabEqRNBl 1 75.025 11181708
CabEqRNBl 2 75.6625 11181774
CabEqRNBl 3 75.45 11181840

Our training strategy involves stochastic gradient descent (SGD)[10] coupled with a mo-
mentum of 0.9. The learning rate is managed using a OneCycleLR scheduler[11], featuring
a maximum rate of 0.5. Throughout the training process, we iterate through 100 epochs for
both datasets. Fig. 3 and Fig. 4 show the loss and accuracy for testing images per epoch
for the CIFAR10 and STL10 datasets.

Table 3. STL10 dataset: From top to bottom: Original ResNet, ResNet with 1, 2, 3 CabEq layers,

ResNet with 1, 2, 3 CabEq Residual Blocks. O. S. is the output shape after each layer.

Table 4. The result of testing STL10 dataset in Original ResNet and ResNet with Cable equation

standard blocks and Cable equation ResNet blocks.
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Fig. 3. Left: Relation between accuracy and epoch count for testing images of CIFAR10 dataset,

Right: Relation between loss and epoch count for testing images of CIFAR10 dataset

Fig. 4. Left: Relation between accuracy and epoch count for testing images of STL10 dataset,

Right: Relation between loss and epoch count for testing images of STL10 dataset

5. Conclusion

The aim of this article is to increase the efficiency of DCNNs for classification tasks. We
obtained the discretization of the PDE using the Grid method. Based on this, a convolution
layer was constructed from the obtained convolution operators, which we called this the
Cable equation layer. Motivated by the application of PDEs in image processing, we built
the architecture by adding the Cable equation layer in front of the DCNN as a learnable
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image processing layer. This enables us to find the best layer to process the image. Our
experiments were conducted on the ResNet architecture, and the tests were performed on
the CIFAR10 and STL10 datasets. Based on the obtained results, we can say that having a
layer with a few parameters can increase effectiveness. The subject of further research can
be integrating the Cable equation layer into other architectures, as well as thinking about
creating new architectures based on the Cable equation layer itself.
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Àííîòàöèÿ

Â ýòîé ñòàòüå ïðåäñòàâëåí íîâûé äâóìåðíûé ñâåðòî÷íûé ñëîé, îñíîâàííûé
íà ïðèíöèïàõ óðàâíåíèÿ â ÷àñòíûõ ïðîèçâîäíûõ íåéðîííîãî âçàèìîäåéñòâèÿ.
Íàøà öåëü èñïîëüçîâàòü ýòîò ñëîé äëÿ ïîâûøåíèÿ òî÷íîñòè êëàññèôèêàöèè
ãëóáîêèõ ñâåðòî÷íûõ íåéðîííûõ ñåòåé äëÿ ðàçëè÷íûõ çàäà÷ êëàññèôèêàöèè.
Ìû óäåëÿåì îñîáîå âíèìàíèå åãî èíòåãðàöèè â àðõèòåêòóðó ResNet è ïðîâîäèì
ýêñïåðèìåíòàëüíûå îöåíêè íàáîðîâ äàííûõ CIFAR10 è STL10 äëÿ ïðîâåðêè åãî
ýôôåêòèâíîñòè.

Êëþ÷åâûå ñëîâà: Ãëóáîêàÿ ñâåðòî÷íàÿ íåéðîííàÿ ñåòü, çàäà÷à êëàññèôèêàöèè,
îáðàáîòêà èçîáðàæåíèé, ResNet, óðàâíåíèå â ÷àñòíûõ ïðîèçâîäíûõ, óðàâíåíèå
êàáåëÿ, ìåòîä ñåòêè.

´³Ý³ÉÇ µ³é»ñ` ÊáñÁ ÏáÝíáÉÛáõóÇáÝ Ý»ÛñáÝ³ÛÇÝ ó³Ýó, ¹³ë³Ï³ñ·Ù³Ý
³é³ç³¹ñ³Ýù,å³ïÏ»ñÇ Ùß³ÏáõÙ, ResNet, Ù³ëÝ³ÏÇ ¹Çý»ñ»ÝóÇ³É Ñ³í³ë³ñáõÙ,
Ù³ÉáõË³ÛÇÝÑ³í³ë³ñáõÙ, ó³Ýó³ÛÇÝ Ù»Ãá¹:

²Ûë Ñá¹í³ÍÁ Ý»ñÏ³Û³óÝáõÙ ¿Ýáñ 2D ÏáÝíáÉÛáõóÇáÝ ß»ñï, áñÁ ÑÇÙÝí³Í ¿Ý»ÛñáÝ³ÛÇÝ 
÷áË³½¹»óáõÃÛ³Ý Ù³ëÝ³ÏÇ ¹Çý»ñ»ÝóÇ³É Ñ³í³ë³ñÙ³Ý ëÏ½µáõÝùÝ»ñÇ íñ³: Ø»ñ 
Ýå³ï³ÏÝ ¿û·ï³·áñÍ»É ³Ûë ß»ñïÁ` µ³ñÓñ³óÝ»Éáõ ËáñÁ ÏáÝíáÉÛáõóÇáÝ Ý»ÛñáÝ³ÛÇÝ 
ó³Ýó»ñÇ ¹³ë³Ï³ñ·Ù³Ý ×ß·ñïáõÃÛáõÝÁ ï³ñµ»ñ ¹³ë³Ï³ñ·Ù³Ý ³é³ç³¹ñ³ÝùÝ»ñÇ 
Ñ³Ù³ñ: Ø»Ýù Ñ³ïáõÏ ß»ßïÁ ¹ÝáõÙ »Ýù ResNet ×³ñï³ñ³å»ïáõÃÛ³Ý Ù»ç ¹ñ³ 
ÇÝï»·ñÙ³Ý íñ³, ¨ ÷áñÓÝ³Ï³Ý ·Ý³Ñ³ïáõÙÝ»ñ »Ýù ³ÝóÏ³óÝáõÙ CIFAR10 ¨ STL10 
ïíÛ³ÉÝ»ñÇ Ñ³í³ù³ÍáõÝ»ñÇ íñ³` ß»ñïÇ ³ñ¹ÛáõÝ³í»ïáõÃÛáõÝÁ Ñ³ëï³ï»Éáõ Ñ³Ù³ñ:
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