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Abstract

Speaker diarization is the process of partitioning an audio recording into segments
corresponding to individual speakers. In this paper, we present a robust speaker di-
arization system and describe its architecture. We focus on discussing the key compo-
nents necessary for building a strong diarization system, such as voice activity detection
(VAD), speaker embedding, and clustering. Our system emerged as the winner in the
Voxceleb Speaker Recognition Challenge (VoxSRC) 2023, a widely recognized compe-
tition for evaluating speaker diarization systems.
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1. Introduction and Related Work

Speaker diarization (SD) is the process of dividing audio into segments according to the
speaker’s identity. It is the process of determining ”who spoke when” in a multi-speaker audio
signal. A typical SD system usually consists of several steps: (1) segment the input audio into
speech segments using a Voice Activity Detector (VAD), (2) generate speaker segments from
the speech segments by either using a uniform sliding window segmentation or by detecting
speaker turns, (3) extract speaker embeddings for each of the speaker segment, (4) group
the resulting speaker embeddings into clusters using clustering algorithms. Commonly used
clustering algorithms include Spectral Clustering (SC) [1] and Agglomerative Hierarchical
Clustering (AHC) [2].

Despite recent advancements in speaker diarization [3], several factors make solving SD
task difficult:

• Uniform speaker segmentation: Long segments very likely contain speaker turn bound-
aries, while short segments carry insufficient speaker information.
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• Unknown number of speakers : In general, both the identity of the speakers and the
number of speakers are unknown beforehand.

• Speaker talk time: A speaker needs to talk long enough to be accurately detected.

• Overlap speech: Talking over each other or interrupting.

• Background noise, room acoustics : Environmental sounds and room conditions can
interfere with speaker recognition.

• Consisting of multiple steps : The SD system involves several steps, each of which
introducing some level of error.

Speaker change detection systems have been proposed to mitigate the uniform segmenta-
tion issue [4, 5]. These systems involve a dedicated model trained to detect the exact moment
when speakers change. To deal with a trade-off between long and short segment lengths, a
group of works employs multi-scale segmentation [6, 7]. They use multiple scales (segment
lengths) and fuse the similarity scores between embeddings obtained from the results of each
scale.

To address the overlap speech problem, the recently introduced target-speaker voice
activity detection (TS-VAD) model [8] has attracted much interest due to its great success
in challenging tasks such as VoxSRC [9, 10, 11] and DIHARD-III [12]. Based on the speaker
profiles obtained from a clustering-based diarization, the TS-VAD system can estimate each
speaker’s frame-level voice activities to refine the initial clustering-based results.

A line of research aims to improve the performance of conventional clustering-based meth-
ods by enhancing either through methods like embedding refinement [13, 14] or by refining
similarity scores among speaker embeddings [1]. In [15], the Teacher-Student approach was
employed to increase the robustness of the speaker embedding extractor against different
acoustic conditions.

An alternative line of research ([16, 17, 18]) tackles the segmentation and clustering
modules jointly. These models are referred to as ”end-to-end”. End-to-end algorithms have
demonstrated their effectiveness over traditional modular systems in controlled situations
with a limited number of speakers. However, their performance suffers in real-world record-
ings with a larger number of speakers.

In this paper, we describe our clustering-based SD system1 for the Diarization Task of
the 2023 VoxCeleb Speaker Recognition Challenge (VoxSRC23)2. The proposed system con-
sists of several sub-modules, such as voice activity detection, speaker embedding extraction,
clustering, and overlap speech detection (OSD). Along with the description, we will outline
how to build a strong speaker diarization system and give a detailed analysis of each method.

2. About the VoxSRC 2023 Challenge

The goal of the VoxSRC challenge is to probe how well current methods can recognize
speakers from speech obtained ’in the wild’. The Voxconverse dataset [19] was used for the
speaker diarization task. The VoxConverse dataset contains 74 hours of human conversation

1http:

//mm.kaist.ac.kr/datasets/voxceleb/voxsrc/data_workshop_2023/reports/krisp_report.pdf
2http://mm.kaist.ac.kr/datasets/voxceleb/voxsrc/interspeech2023.html
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extracted from YouTube videos. The dataset is divided into a development set (20.3h, 216
recordings) and a test set (53.5h, 232 recordings). The number of speakers in each recording
has a wide range of variety from 1 speaker to 21 speakers. The audio comprises a variety of
noises, such as background music, laughter, and so on. It also contains a significant portion
of overlapping speech from 0% to 30.1% depending on the recording. The primary metric for
this task is the Diarization Error Rate (DER), which is the sum of three terms: false alarm
(FA, incorrectly marking non-speech as speech), missed detection (MS, incorrectly marking
speech as non-speech) and speaker confusion error rate (CER, assigning the wrong speaker
ID within a speech region). A separate evaluation dataset (VoxSRC-23 Test) was used to
establish the rankings on the leaderboard.

3. System Configuration

3.1 Voice Activity Detection

Voice Activity Detection is the process of identifying speech segments within an audio signal,
serving as an essential initial phase for speaker diarization. We employ four different VAD
models, each designed to capture various facets of the task.

3.1.1 GRU-Based VAD

We use a stack of 4 Gated Recurrent Unit (GRU) layers, incorporating layer normalization
between each layer. The final dense layer with sigmoid activation is responsible for calculat-
ing the likelihood of speech occurrence. With this setup, we generate a probability score for
every 30ms of speech. Values nearing 1, signify the presence of speech, whereas values closer
to 0 suggest its absence. We use the Voxconverse dev set for training and the Voxconverse
test set for validation.

3.1.2 NC-Based VAD

We adopt the Noise Cancellation (NC) model [20] to detect voice activity. First, we apply the
NC model to remove any noise and non-speech signals from the original audio. Subsequently,
for each 50ms interval, we calculate the energy of that interval and establish a threshold.
If the energy level exceeds the threshold, we label the segment as speech; otherwise, it is
categorized as non-speech. Additionally, we apply simple post-processing steps to obtain
homogeneous speech activity segments. The architecture of the NC model is the same as
the GRU-VAD architecture, with the exception that it generates a mask. This mask is
subsequently applied to the input spectrogram and transformed into a waveform using the
Inverse Fourier Transform.

3.1.3 ASR-Based VAD

Another approach to detecting voice activity segments involves making use of an Automatic
Speech Recognition (ASR) model to generate timestamps at the level of individual words.
We derive word-level timestamps by employing the Conformer-Medium checkpoint available
in the NeMo3 package. Similar to NC-based VAD, here we also apply post-processing steps
to obtain homogeneous speech segments.

3https://github.com/NVIDIA/NeMo
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3.1.4 Pyannote VAD

We also provide evaluation results for an open-source VAD model available in pyannote
package [21]. Specifically, we employ the pyannote.audio 2.1 4 segmentation pipeline for
computing the voice activity regions.

#Model FA MISS Detection Error

GRU-based 2.59% 1.40% 3.99%
NC-based 2.83% 2.09% 4.92%

ASR-based 3.04% 1.74% 4.79%
Pyannote 2.01% 1.19% 3.20%

Fusion 2.02% 0.82% 2.84%

Table 1 shows that NC-based and ASR-based VAD models have inferior performance
compared to systems trained under direct supervision. However, when we fuse these models
using a majority vote, we achieve a reduction in detection error rate by 0.36%.

3.2 Speaker Embedding Extraction

Speaker embeddings are fixed-size vector representations from a speech signal that exclusively
capture unique characteristics of the speaker’s identity. Speaker embeddings are commonly
used to classify and discriminate between different speakers.

A few publicly available speaker embedding models listed in Table 2 were compared with
the corresponding performance results and the corresponding training datasets. Performance
results are reported in equal error rates (EER), which is a standard metric used to evaluate
speaker verification.

Embedding EER Training Datasets

TitaNet-Large[22]
0.68%

Vox1-Clean
Voxceleb1+Voxceleb2, Fisher, Switchboard, Librispeech

TitaNet-Small[22]
1.08%

Vox1-Clean
Voxceleb1+Voxceleb2, Fisher, Switchboard, Librispeech

RawNet3[23]
0.89%
Vox1-O

Voxceleb1+Voxceleb2

ECAPA-TDNN[24]
0.80%

Vox1-Clean
Voxceleb1+Voxceleb2

To increase the accuracy of speaker recognition and speaker diarization for noisy audios,
we finetune TitaNet-Small with the Teacher-Student method [15] by adding L2-regularization
term to the AAM loss [25], between embeddings for augmented and non-augmented ver-
sions of the same audio utterance. We follow the fine-tuning steps presented in [15]. For

4https://huggingface.co/pyannote/segmentation

Table 1. Detection Error Rate of the VAD model on Voxconverse test set.

Table 2. Equal Error Rate values for different embedding extraction models evaluated on the

Voxceleb test benchmark.
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fine-tuning, we use the VoxCeleb1 [26] and VoxCeleb2 [27] datasets. By employing this ap-
proach, we achieved EER comparable to the pre-trained TitaNet-Small5 model under normal
conditions. However, the technique demonstrated superior performance in noisy conditions.

3.3 Clustering

Once computed, the speaker embeddings are grouped into clusters. We use two different
clustering algorithms for SD. One method relies on spectral clustering and the other is based
on agglomerative hierarchical clustering.

3.3.1 Spectral Clustering

Our SC-based diarization is similar to [15]. We perform multi-scale segmentation [7] and
extract embeddings with different window and shift sizes. The affinity matrices are con-
structed using the cosine similarity between segment embeddings and are then fused into a
single matrix (see Fig. 1). We further apply the following sequence of refinement operations
on the affinity matrix A (see Fig. 2):

• Row-wise Thresholding : For each row, keep the top-p largest elements and set the rest
to 0

• Symmetrization: Y = 1
2
(A+ AT )

• Diffusion: Y = AAT

Afterwards, we apply the spectral clustering algorithm to obtain speaker IDs. The number
of speakers is determined using the maximal eigen-gap approach [1].

Fig. 1. Multi-scale segmentation scheme.

Fig. 2. Refinement operations on the affinity matrix.

5https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/titanet_small
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3.3.2 Agglomerative Hierarchical Clustering

First, we extract speaker embeddings from uniformly segmented speech regions. Then, we
refine these embeddings through spectral dimensionality reduction6 and affinity aggregation
(AA) techniques [14]. We merged consecutive segments into a longer one if the distance was
greater than the segment threshold. Afterwards, we perform a plain agglomerative clustering
on the refined embeddings with a relatively high stop threshold to obtain the clusters with
high confidence. The clusters from AHC were further processed using the short-duration
filter [2, 10]. We categorize a cluster as ”short” if the combined duration of that cluster is
below the specified duration threshold. Later, each short cluster is assigned to the nearest
long cluster based on the cosine distance of their central embeddings. Finally, if a short
cluster significantly differs from all long clusters, which means that the distance between
them is lower than a speaker threshold, we consider it as a new speaker.

3.4 Overlap Speech Detection

To detect regions where two or more speakers are speaking simultaneously, we use pyannote
overlap speech detection pipeline7. After an overlapped region is detected, we replace the
label with the two closest speakers near this region in the time domain.

3.5 Fusion

To improve the diarization accuracy, a series of studies were conducted on the fusion method
of multiple diarization results. More recently, the diarization output voting error reduction
(DOVER) method [28] was proposed to combine multiple diarization outputs based on the
voting scheme. The DOVER method has an implicit assumption that there is no overlapping
speech, i.e., at most only one speaker is assigned for each time index. To accommodate di-
arization outputs with overlapping speakers, the DOVER-LAP [29] method was subsequently
introduced.

We combine different diarization systems using the DOVER-Lap8 fusion method with
the Hungarian label mapping algorithm.

4. Experimental Results

Table 3 shows the results on the voxconverse test set and the challenge evaluation test
set. The first row of the table displays the baseline result (VGG baseline), provided by the
challenge organizers. We start with the pyannote VoxSRC22 pipeline (#1) as our initial
system and enhance it by applying the affinity aggregation technique (#2) to refine the
embeddings. This adjustment results in a reduction of 0.59% in DER on the voxconverse
test set.

Next, we designed several diarization systems based on spectral clustering with different
embedding extractors (#3−#9). These systems all rely on uniform speaker segmentation,
which leads to speaker errors, mainly around the speaker turns. To mitigate this issue, we use

6https:

//scikit-learn.org/stable/modules/generated/sklearn.manifold.SpectralEmbedding.html
7https://huggingface.co/pyannote/overlapped-speech-detection
8https://github.com/desh2608/dover-lap
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different segmentation setups by changing both the window size and the shift size. Multi-
scale segmentation (#5,#8) is also designed to tackle this problem and to remove noisy
entries from the affinity matrix. Furthermore, to make the systems more robust, we apply a
sequence of refinement operations on the affinity matrix. In single-scale segmented setups, we
establish the top-p value for row-wise thresholding as 8. In the case of multi-scale segmented
setups, this value is adjusted to 30. As one can see from Table 3, multi-scale segmented
systems outperform single-scale ones by a margin of 0.3%. Surprisingly, system #9, which
was finetuned with the Teacher-Student technique, achieves a similar score (5.23%) on the
voxconverse test set without using multi-scale segmentation.

As noted in [10], SC-based and AHC-based clustering methods complement each other.
Through our experiments, we also observed similar behaviour. Spectral clustering pro-
vides a more precise estimation of the number of speakers, whereas AHC-based clustering
tends to consistently overestimate it. Conversely, AHC-based clustering excels at identifying
the dominant speakers and demonstrates superior performance on shorter audio files com-
pared to spectral clustering. We conduct a hyperparameter search for AHC-based systems
(#10,#11,#12) on the voxconverse test subset to determine the optimal values for segment
threshold, stop threshold, duration threshold, and speaker threshold. As it is illustrated in
Table 3, AHC-based systems show slightly worse DER scores (5.32%-5.41%) compared to
SC-based systems.

N System Window [s] Shift [s] Voxconverse Test VoxSRC-23 Test

DER[%] DER[%]

VGG baseline - - - 8.68

#1 Pyannote VoxSRC22 - - 5.89 7.33
#2 Pyannote VoxSRC22+AA - - 5.30 -

#3 TitaNet-Large-SC 1.0 0.75 6.00 -
#4 TitaNet-Large-SC 2.0 1.0 5.59 -
#5 TitaNet-Large-SC [2.0, 1.5, 0.75] [1, 0.5, 0.25] 5.25 -

#6 ECAPA-TDNN-SC 1.0 0.75 6.05 -
#7 ECAPA-TDNN-SC 2.0 1.0 5.71 -
#8 ECAPA-TDNN-SC [2, 1.5, 0.75] [1, 0.5, 0.25] 5.38 -

#9 TitaNet-Small-SC 1.5 0.5 5.23 -

#10 TitaNet-Large-AHC 1.5 0.5 5.41 -
#11 ECAPA-TDNN-AHC 1.5 0.5 5.38 -
#12 RawNet3-AHC 1.5 0.75 5.32 -

Fusion(3+4+5+6+7+8)+OSD - - 4.80 6.35
Fusion(2+3+4+5+6+7+8)+OSD - - 4.76 5.98

Fusion(2+5+8+9+10+11+12)+OSD - - 4.39 4.71

Our best system combines 7 different systems fused by DOVER-Lap. Among them,
3 systems are based on spectral clustering, while 4 systems are based on AHC (including
pyannote system #2). We first fused the systems and then dealt with the overlap because
fusing with overlapping labels did not demonstrate any improvement on the voxconverse test
set. This fused system achieves 4.39% DER on the voxconverse test set and 4.71% DER on
the challenge evaluation set, which ranks 2nd place in the VoxSRC 2023 challenge.

Table 3. The performance of different speaker diarization systems.
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5. Discussions

Throughout our experiments, we observed that better performance on widely adopted
speaker verification evaluation protocols does not lead to better diarization performance.
Additionally, the embedding extractors did not encounter situations where multiple speak-
ers were present in audio utterances. Such scenarios are unavoidable in speaker diarization
due to factors like overlapping speech and speaker transitions.

In contrast to speaker verification, which uses speaker embeddings to represent an endless
number of speakers, speaker diarization only uses embeddings to represent a small number
of speakers in a single session. For instance, only a small part of the information included
in the embeddings will be used to distinguish between a small number of speakers, even if
high-dimensional embeddings are extracted.

Another drawback of conventional clustering-based SD systems is that they do not take
into consideration embedding ordering. Conversations involving multiple speakers are highly
structured, and turn-taking behaviours are not dispersed randomly throughout time.

In our future work, we plan to investigate speaker verification evaluation protocols that
better simulate the diarization scenario. Additionally, we will explore techniques aimed at
adapting and contextualizing speaker embeddings for the speaker diarization task, as well
as exploring approaches to leverage ordering information of embeddings.

6. Conclusions

In this paper, we described our submitted SD system for the diarization task of the 2023
VoxSRC challenge. We mainly focused on reducing speaker confusion errors. To achieve
this goal, we used various methods, such as multi-scale segmentation, affinity refinement
operations, and teacher-student techniques to make our SD systems robust to background
noise and errors that might arise from uniform speech segmentation. Our final system
yielded notable results, reaching a DER of 4.39% on the voxconverse test set and 4.71% on
the challenge evaluation set.
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áñÁ É³ÛÝáñ»Ý ×³Ý³ãí³Í ¿ ËáëÝ³ÏÝ»ñÇ ¹Ç³ñÇ½³óÙ³Ý Ñ³Ù³Ï³ñ·»ñÇ ·Ý³Ñ³ïÙ³Ý
ÙñóáõÛÃáõÙ:

Ïîñòðîåíèå ñèñòåìû äèàðèçàöèè äèêòîðîâ:
îïûò èç VoxSRC 2023

Äàâèä Ñ. Êàðàìÿí1;2 è Ãðèãîð À. Êèðàêîñÿí2;3

1Ðîññèéñêî-Àðìÿíñêèé óíèâåðñèòåò, Åðåâàí, Àðìåíèÿ
2Krisp.ai, Åðåâàí, Àðìåíèÿ

3Èíñòèòóò ìàòåìàòèêè ÍÀÍ ÐÀ, Åðåâàí, Àðìåíèÿ
e-mail: fdkaramyan, sharutyunyan, gkirakosyang@krisp.ai

Àííîòàöèÿ

Äèàðèçàöèÿ äèêòîðîâ - ýòî ïðîöåññ ðàçäåëåíèÿ àóäèîçàïèñè íà ñåãìåíòû,
êîòîðûå ñîîòâåòñòâóþò îòäåëüíûì äèêòîðàì. Â ýòîé ñòàòüå ïðåäñòàâëåíà
íàäåæíàÿ ñèñòåìà äèàðèçàöèè ãîâîðÿùèõ è îïèñàíà àðõèòåêòóðà äàííîé
ñèñòåìû. Cîñðåäîòî÷åíî âíèìàíèå íà îáñóæäåíèè êëþ÷åâûõ êîìïîíåíòîâ,
òàêèõ êàê îáíàðóæåíèå ðå÷åâîé àêòèâíîñòè ýêñòðàêòîð ðå÷åâûõ õàðàêòåðèñòèê
è êëàñòåðèçàöèÿ, êîòîðûå íåîáõîäèìû äëÿ ñîçäàíèÿ íàäåæíîé ñèñòåìû
äèàðèçàöèè. Äàííàÿ ñèñòåìà ñòàëà ïîáåäèòåëåì êîíêóðñà Voxceleb Speaker
Recognition Challenge (VoxSRC) 2023, øèðîêî ïðèçíàííîãî êîíêóðñà ïî îöåíêå
ñèñòåì äèàðèçàöèè äèêòîðîâ.

Êëþ÷åâûå ñëîâà: Ðàñïîçíàâàíèå ïî ãîëîñó, äèàðèçàöèÿ äèêòîðîâ, VoxSRC
2023.

´³Ý³ÉÇ µ³é»ñ` ÊáëÝ³ÏÝ»ñÇ ÝáõÛÝ³Ï³Ý³óáõÙ, ËáëÝ³ÏÝ»ñÇ ¹Ç³ñÇ½³óÇ³,
VoxSRC2023:
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