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Abstract

The optimal Neyman-Pearson procedure of detection is investigated for models
characterized by four continuous probability distributions arranged into two groups
considered as hypotheses. It is worthy to note that the case of three discrete probabil-
ity distributions arranged in two groups was studied by Haroutunian and Yesayan in
[1]. The Neyman-Pearson theorem holds immense importance when it comes to solving
problems that demand decision making or conclusions to a higher accuracy.
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1. Introduction

The Neyman-Pearson theorem states that the likelihood ratio test is the most powerful test
for a given significance level (or size) in the context of simple binary hypothesis testing
(null hypothesis against alternative hypothesis) problems. It provides a theoretical basis for
determining the critical region or decision rule that maximizes the probability of correctly
detecting a true effect while maintaining a fixed level of Type I error.

Statistical power represents the ability of a hypothesis test to detect a true effect or
difference when it exists in the population. The theorem emphasizes the importance of
optimizing this power while controlling the risk of both Type I and Type II errors. Type I
error, also known as a false positive, occurs when we reject the null hypothesis (assuming
an effect or difference exists) when it is actually true. Type II error, on the other hand,
refers to a false negative, where we fail to reject the null hypothesis (assuming no effect or
difference) when an effect or difference truly exists. The Neyman-Pearson theorem allows us
to strike a balance between these errors by maximizing power while setting a predetermined
significance level (the probability of Type I error).

In [2]-[4], Cox formulated several divers examples of problems for two families of hypothe-
ses testing and developed a general modification of the Neyman-Pearson maximum-likelihood
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ratio procedures for the solution of such problems for the parameters of known continuous
probability distributions (CPDs). In [I], Haroutunian and Yesayan studied the problems
concerning the Neyman-Pearson criterion where discrete probability distributions are ar-
ranged in many groups and where the error probabilities decrease exponentially as 27VF,
when the number of observations N (size of sample) tends to infinity. In [5], Tusnady studied
the hypotheses testing problem of two CPDs, where error probabilities also exponentially
approach zero. The optimal hypotheses testing problems, when error probabilities exponen-
tially approach zero were also studied in [6] and in [7]-[9]. In [§], Haroutunian, Hakobyan
and Hormosi-nejad studied on two-stage optimal testing of multiple hypotheses for the pair
of families of discrete distributions. In [9], Yesayan and Gevorgyan solved the problem of
many CPDs by means of two-stage asymptotically optimal testing of multiple hypotheses
based on Tusnady’s result.

The hypotheses testing problems for two hypotheses were described in detail by Borovkov
[10], Levy [11], van Trees [12], Csiszar and Longo [13], Csiszar and Shields [14], Longo
and Sgarro [I5]. The Neyman-Pearson criterion of multiple hypotheses testing for discrete
random variable was explored in [16].

This paper is devoted to the generalization of the Neyman-Pearson criterion for composite
hypotheses testing problem of CPDs. The result is based on the method proposed by Thomas
and Cover [17] in the paragraph of information theory and statistics.

2. Problem Presentation and Solution

Let P(X) be the space of all CPDs. Let X be a continuous random variable (CRV) with
one of 4 possible CPDs given by probability density functions (PDFs) f,,, m = 1,4. Let
x = (21, %9, ...,ZN), T, € X, n =1, N, be a vector of results of N independent observations

N
of the RV X, then the PDF will be f¥(x) = [] fn(zn).

For a CRV X, four PDFs f1, fa, f3, fa a?re1 given, called the hypotheses. A statistical
hypothesis H is a conjecture about the distribution of population X.
The statistician should make a decision about CPD of CRV. In this paper, we consider this
problem in two stage. These PDFs are divided into two groups (hypotheses) such that the
first hypothesis H; is the group of k£ = 1,2,3 PDFs and the second hypothesis is the group
of 4 — k PDFs. Let us consider the partition when & = 2 and the hypotheses are as follows:

Hy:{fi, fo}, Ho:{fs, fa} (1)

In the first stage the statistician must accept or reject the first hypothesis on the base of
sample x. If the first hypothesis is not rejected the statistician can detect which PDF (f; or
f2) corresponds to CRV. So, if it is rejected the second stage detection will be between f3
and f;.

Taking decisions about the hypotheses statistician can commit the errors.

The probability ozl]ﬁ is to accept a hypothesis different from the true hypothesis H;, [ =
1,2.

We will show that the proposed Thomas and Cover’s proof of Neyman-Pearson theorem for
discrete probability distributions will also work for this case.

We will use these notations for the mazimum-likelihood ratio procedure, so we will take the
mazimum of a pair of PDFs: ¢V (x) = max(fi™ (x); f2"V (x)), g5 (x) = max(f5" (x); fs"¥ (x)).
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Theorem 1. For the threshold t > 0, consider the test Uy defined by region of acceptance

AN* for hypothesis H,:
N
AN*:{X: 91 (%) >t},
g2 (x)

and acceptance region AN* for H,.

So, by these definitions, the corresponding error probabilities (mentioned also in the
introduction) will be

ot (t) = ad (1) = g (A7) = / oY (%)d(x),

o350 = ali) = ) = [ ol

Let AN C XV be the decision region for H; of another test ¥y with error probabilities aflfl
and Oéé\‘g If 041‘1 < O‘1|1’ then 042|2 > aé\lf;

Proof. Let ¥ ~v. and Wy~ be indicator functions of regions. The indicator function is

1, if the sample belongs to the corresponding region, and 0, otherwise. It is obvious that for
all x € XV,

(W 4 (%) = W yn (%)) (g1 (%) — tg2™ (%)) > 0.
Then

/ EXN(‘PAN* (x)gr" (%) — £ an+ (x)g2" (x) — W an (x)g7 (%) + 1V 4n (x) 92" (x))d(x)

[ 66—t G0y — [ (60— 103 )
x€AN*

xe AN
= (1 —aqy) — tagp — (1 — amp) + tage = (aup — ajpy) + tazp — agp) 2 0.

So, from oy < oq‘l it follows that cqp > Oz§|2.

3. Conclusion

This paper discussed a suitable strategy of hypotheses testing for models with 4 known CPDs
grouped in 2 clusters, considered as hypotheses. This problem can be generalized for M > 4
hypotheses, which can be grouped into 2 clusters in various combinations, i.e., the first
hypothesis will be composed by K = 1,2,...M — 1 PDFs and the second by M — K PDFs.
The solving method will be the same, but it is obvious that the result of each combination
will be different.
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Udthnthnid

‘UhipdwG-Nhpunth uvinniquwl oyumhdw) pGpuguwlupgp hbmwgnuynid £ w6 dnnkiGhpp
hwdwn, npnlp pnipugpynid G0 ynpu wiplnhwwm hwjwlwlwlwihG pwfumdiGtpny, npnlp
pwdwijwo G0 npytiu Jupywottp nhunwlynn tpynt fudph dke: <wny t G2t np ipynt fudph
ut9 pwdwljwo tptip ghulptin hwjwlwlywlwjhG pwpuniGbiph nhwypp htmwgnuyby L
LwpnipymGyubh b Guwywbh Ynnihg [1]:

‘UhpdwG-NhpuntGh pbnpbidp 0o GQwlwympyniG niGh, Gpp funupp ybpwpbpmd E
wjlwhuh fulnhpGtph Modwlp, npnlp wwhwlonid GG npnpnmudGbp uywglby yud wytih
pwndén G2qpunipjudp bqpujugmpynGibp wiby:

Pwluwjh pwntp’  UbjdwG-NhpunGh  wbuwm, wipphwun pwpfumd,  funmpjul
Inyghw, JupyuwoGtiph unmnignid, vjuwih hwywlwlywlnipnil, hntuwhnipymG:
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AnHoTanus

HNccaepyercss onTuManbHasg Ipolepypa TectupoBaHusa Helimana-IlupcoHa aag
MOAEAEH, XapaKTEePU3YIOIIUXCA YeThIPbMSI HEeIIPEPBIBHBIMU pPAacCIpeAeAeHUSIMU Be-
POSAATHOCTEMN, pa30UTBIMHM HA ABE€ TPYHINBl, pacCcMaTpUBaeMble KaK TI'MIIOTE3HI.
[TpuMmedyaTeAbHO, YTO CAydYall TpeX AUCKPETHBIX PaCIPeAeAeHUN BepOsITHOCTEN,
PaCIIOAOKEHHBIX B ABYX I'pyHIlaX, ObIA u3ydeH ApyTioHSHOM U EcagHoM [1].

Teopema Helmana-IlupcoHa mMeeT OrpoMHOe 3HaueHHE, KOTAQ Pedb HUAET O
pelleHnn 3apa4, TPeOYIOIINX NPUHATHS PEIleHUU WAM BBIBOAOB C OOAee BBICOKOU
TOYHOCTBIO.

KaroueBrie caoBa: Kpurepuit Hetimana-ITupcoHa, HellpephIBHOE pacIlpeAeAeHue,
(PYHKIUSA NAOTHOCTH, IPOBEPKA TUIIOTE3, BEPOSATHOCTD OLIMOKM, HAAEKHOCTb.
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