Complete Caps in Affine Geometry $\boldsymbol{A G}(\boldsymbol{n}, 3)$

Karen I. Karapetyan
Institute for Informatics and Automation Problems of NAS RA
e-mail: karen-karapetyan@iiap.sci.am

Abstract

We consider the problem of constructing complete caps in affine geometry $\operatorname{AG}(n, 3)$ of dimension n over the field F_{3} of order three. We will take the elements of F_{3} to be 0,1 and 2. A cap is a set of points, no three of which are collinear. Using the concept of P_{n}-set, we give two new methods for constructing complete caps in affine geometry $A G(n, 3)$. These methods lead to some new upper and lower bounds on the possible minimal and maximal cardinality of complete caps in affine geometry $\operatorname{AG}(n, 3)$.

 Keywords: Affine geometry, Projective geometry, Cap, Complete cap.Article info: Received 28 February 2022; received in revised form 2 May 2022; accepted 16 May 2022.

1. Introduction

A cap in an affine geometry $A G(n, q)$ or in a projective geometry $P G(n, q)$ over a finite field F_{q} is a set of points no three of which are collinear. A cap is called complete when it cannot be extended to a large cap. The central problem in the theory of caps is to find the maximal and minimal sizes of caps in the affine geometry $\operatorname{AG}(n, q)$ or in the projective geometry $P G(n, q)$. In this paper, $s_{n, q}$ and $s_{n, q}^{\prime}$ denote the size of the largest caps in $\operatorname{AG}(n, q)$ and $P G(n, q)$, respectively. Presently, only the following exact values are known: $s_{n, 2}=s_{n, 2}^{\prime}=2^{n}, s_{2, q}=$ $s_{2, q}^{\prime}=q+1$ if q is odd, $s_{2, q}=s_{2, q}^{\prime}=q+2$ if q is even, and $s_{3, q}^{\prime}=q^{2}+1, s_{3, q}=q^{2}[1,2]$. Aside from these general results, the precise values are known only in the following cases: $s_{4,3}=$ $s_{4,3}^{\prime}=20$ [3], $s_{5,3}^{\prime}=56[4], s_{5,3}=45$ [5], $s_{4,4}^{\prime}=41$ [6], $s_{6,3}=112$ [7]. In the other cases, only lower and upper bounds on the sizes of caps in $A G(n, q)$ and $P G(n, q)$ are known. Finding the exact value for $s_{n, q}$ and $s_{n, q}^{\prime}$ in the general case seems to be a very hard problem [8-10]. The only complete cap in $A G(n, 2)$ is the whole $A G(n, 2)$. The trivial lower bound for the size of the
smallest complete cap in $A G(n, q)$ is $\sqrt{2} q^{\frac{n-1}{2}}$. For even q there exist complete caps in geometry $A G(n, q)$ with less than $q^{\frac{n}{2}}$ points. But for odd q complete caps in $A G(n, q)$ with less than $q^{\frac{n}{2}}$ points are known to exist $[11,12]$ only for $n=0(\bmod 4), n=2(\bmod 4)$. For more information about complete caps, for small values n and q, we refer the reader to [10-13]. Note that the problem of determining the minimum size of a complete cap in a given geometry is of particular interest in Coding theory. Using the concept of $a P_{n}$-set, which was introduced by the author in 2015 [14], we give two new methods for constructing complete caps in the affine geometry $A G(n, 3)$. These methods yield some new upper and lower bounds on the possible minimal and maximal sizes of complete caps in the affine geometry $\operatorname{AG}(n, 3)$.

2. Main Results

We will write the points of $A G(n, q)$ in the following way: $\boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$, and let us denote by $\mathbf{0}=(0, \cdots, 0)$ the origin point of the geometry $\operatorname{AG}(n, 3)$. It is easy to check that if \boldsymbol{S} is a cap in $A G(n, 3)$, then $\boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma} \neq \mathbf{0}(\bmod 3)$ for every triple of distinct points $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} \in \boldsymbol{S}$. Let's denote by $B_{n}=\left\{\boldsymbol{\alpha}=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \mid \alpha_{i}=1,2\right\}$ and by P_{n} the set of points of $A G(n, 3)$ satisfying the following two conditions:
i) for any two distinct points $\boldsymbol{\alpha}, \boldsymbol{\beta} \in P_{n}$, there exists $i(1 \leq i \leq n)$ such that $\alpha_{i}=\beta_{i}=0$,
ii) for any triple of distinct points $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} \in P_{n}, \boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma} \neq \mathbf{0}(\bmod 3)$.

We say P_{n} to be complete when it cannot be extended to a larger one. We will define the concatenation of the points of the sets in the following way. Let $A \subset A G(n, 3)$ and $B \subset$ $A G(m, 3)$. We form a new set $A B \subset A G(n+m, 3)$ consisting of all points $\boldsymbol{\alpha}=\left(\alpha_{1}, \cdots, \alpha_{n}\right.$, $\left.\alpha_{n+1}, \cdots, \alpha_{n+m}\right)$, where $\boldsymbol{\alpha}^{(1)}=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in A$ and $\boldsymbol{\alpha}^{(2)}=\left(\alpha_{n+1}, \cdots, \alpha_{n+m}\right) \in B$. In a similar way, one can define the concatenation of the points for any number of sets.

Claim 1. Note that if $x, y, z \in F_{3}$, then $x+y+z=0(\bmod 3)$ if and only if $x=y=z$ or they are pairwise distinct numbers.
The following two theorems, which we need, are proven in [16, 17].
Theorem 1: The following recurrence relation $P_{n}=P_{n_{1}} P_{n_{2}} B_{n_{3}} \cup P_{n_{1}} B_{n_{2}} P_{n_{3}} \cup B_{n_{1}} P_{n_{2}} P_{n_{3}}$, with initial sets $P_{1}=\{(0)\}, P_{2}=\{(0,1),(0,2)\}$ and $n=\sum_{j=1}^{3} n_{j}$, yields a complete P_{n} set.

Having the sets $P_{n_{1}}, P_{n_{2}}, P_{n_{3}}, P_{n_{4}}, P_{n_{5}}, P_{n_{6}}$ and $B_{n_{1}}, B_{n_{2}}, B_{n_{3}}, B_{n_{4}}, B_{n_{5}}, B_{n_{6}}$, let us form the following ten sets, by concatenation of the points of the sets.

$$
\begin{array}{ll}
A_{1}=P_{n_{1}} P_{n_{2}} B_{n_{3}} B_{n_{4}} B_{n_{5}} P_{n_{6}}, & A_{2}=B_{n_{1}} P_{n_{2}} P_{n_{3}} P_{n_{4}} B_{n_{5}} B_{n_{6}}, \\
A_{3}=P_{n_{1}} B_{n_{2}} P_{n_{3}} B_{n_{4}} P_{n_{5}} B_{n_{6}}, & A_{4}=B_{n_{1}} B_{n_{2}} P_{n_{3}} P_{n_{4}} B_{n_{5}} P_{n_{6}}, \\
A_{5} B_{n_{1}} B_{n_{2}} P_{n_{3}} B_{n_{4}} P_{n_{5}} P_{n_{6}}, & A_{6}=B_{n_{1}} P_{n_{2}} B_{n_{3}} P_{n_{4}} P_{n_{5}} B_{n_{6}}, \\
A_{7} B_{n_{1}} P_{n_{2}} B_{n_{3}} B_{n_{4}} P_{n_{5}} P_{n_{6}}, & A_{8}=P_{n_{1}} B_{n_{2}} B_{n_{3}} P_{n_{4}} P_{n_{5}} B_{n_{6}}, \\
A_{n_{6}}, & A_{10}=P_{n_{1}} P_{n_{2}} P_{n_{3}} B_{n_{4}} B_{n_{5}} B_{n_{6}} .
\end{array}
$$

Theorem 2: The following recurrence relation $P_{n}=\bigcup_{i=1}^{10} A_{i}$, with initial sets $P_{1}=\{(0)\}, P_{2}=$ $\{(0,1),(0,2)\}$ and $n=\sum_{i=1}^{6} n_{i}$ yields a complete P_{n} set.

Claim 2. Note that from the construction of P_{n} in both theorems it follows that for every i ($1 \leq$ $i \leq n)$, if the point $\boldsymbol{p}=\left(p_{1}, \ldots, p_{i}, \ldots, p_{n}\right) \in P_{n}$ and $p_{i} \neq 0$, then, also, the point $\boldsymbol{p}^{\prime}=$ $\left(p_{1}, \ldots, p_{i}^{-1}, \ldots, p_{n}\right) \in P_{n}$, where p_{i}^{-1} is the additive inverse of p_{i} in the field F_{3}.

The following two main theorems without proofs were first presented at CSIT 2015 in a weak form [14], that they yield caps. But at CSIT 2017 they were presented with a strong conclusion that they yield complete caps [15]. In this paper, we give their complete proofs.

Theorem 3: If P_{n} and P_{m} are constructed either by Theorem 1 or by Theorem 2, then for the given natural numbers n and m, the set $S=P_{n} B_{m} \cup B_{n} P_{m}$ is a complete cap in the geometry $A G(n+m, 3)$.

Proof. First of all we will prove that the set $S=P_{n} B_{m} \cup B_{n} P_{m}$ is a cap. Suppose, to the contrary, that S is not a cap. Then there is a triple of distinct points $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} \in S$, such that $\boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma}=$ $\mathbf{0}(\bmod 3)$. Let's represent the points $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}$ as $\boldsymbol{\alpha}=\boldsymbol{\alpha}^{(1)} \boldsymbol{\alpha}^{(2)}, \boldsymbol{\beta}=\boldsymbol{\beta}^{(1)} \boldsymbol{\beta}^{(2)}$ and $\boldsymbol{\gamma}=\boldsymbol{\gamma}^{(1)} \boldsymbol{\gamma}^{(2)}$, respectively, where $\boldsymbol{\alpha}^{(\mathbf{1})}=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \boldsymbol{\alpha}^{(2)}=\left(\alpha_{n+1}, \cdots, \alpha_{n+m}\right), \boldsymbol{\beta}^{(\mathbf{1})}=\left(\beta_{1}, \cdots, \beta_{n}\right), \boldsymbol{\beta}^{(2)}=$ $\left(\beta_{n+1}, \cdots, \beta_{n+m}\right), \boldsymbol{\gamma}^{(1)}=\left(\gamma_{1}, \cdots, \gamma_{n}\right)$ and $\boldsymbol{\gamma}^{(2)}=\left(\gamma_{n+1}, \cdots, \gamma_{n+m}\right)$. Thus, we obtain $\boldsymbol{\alpha}^{(\mathbf{1})}+$ $\boldsymbol{\beta}^{(1)}+\boldsymbol{\gamma}^{(\mathbf{1})}=\mathbf{0}(\bmod 3)$ and $\boldsymbol{\alpha}^{(2)}+\boldsymbol{\beta}^{(2)}+\boldsymbol{\gamma}^{(2)}=\mathbf{0}(\bmod 3)$. If all three points $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} \in P_{n} B_{m}$, then it follows that $\boldsymbol{\alpha}^{(1)}, \boldsymbol{\beta}^{(1)}, \boldsymbol{\gamma}^{(1)} \in P_{n}$ and $\boldsymbol{\alpha}^{(2)}, \boldsymbol{\beta}^{(2)}, \boldsymbol{\gamma}^{(2)} \in B_{m}$. The definition of the set P_{n} implies that $\boldsymbol{\alpha}^{(\mathbf{1})}=\boldsymbol{\beta}^{(\mathbf{1})}=\boldsymbol{\gamma}^{(\mathbf{1})}$ and Claim 1 implies that $\boldsymbol{\alpha}^{(\mathbf{2})}=\boldsymbol{\beta}^{(\mathbf{2})}=\boldsymbol{\gamma}^{(\mathbf{2})}$. Therefore, $\boldsymbol{\alpha}=$ $\boldsymbol{\beta}=\boldsymbol{\gamma}$, which contradicts that $\boldsymbol{\alpha}, \boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ are pairwise distinct points. In the same manner, one can prove the case, when all three points $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} \in B_{n} P_{m}$, is impossible. Now let us assume that two of these points belong to one set (say $\boldsymbol{\alpha}, \boldsymbol{\beta} \in P_{n} B_{m}$) and the third point $\boldsymbol{\gamma}$ belongs to the other set (say $\gamma \in B_{n} P_{m}$). By definition of P_{n} there is $i, 1 \leq i \leq n$, so that $\alpha_{i}=\beta_{i}=0$. But, by definition of $B_{n}, \gamma_{i}=1$ or 2 . Hence, $\alpha_{i}+\beta_{i}+\gamma_{i} \neq 0(\bmod 3)$, which contradicts that $\boldsymbol{\alpha}+\boldsymbol{\beta}+$ $\boldsymbol{\gamma}=\mathbf{0}(\bmod 3)$. In a similar way, one can prove the case when two points belong to $B_{n} P_{m}$ and the third one belongs to $P_{n} B_{m}$ is impossible. Therefore, S is a cap.
We will prove the completeness of S again by contradiction. Suppose that there is a point $\boldsymbol{\alpha}=$ $\left(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1}, \ldots, \alpha_{n+m}\right)$, such that $\boldsymbol{\alpha} \notin \mathrm{S}$ and $\mathrm{S} \cup\{\boldsymbol{\alpha}\}$ is a cap. Let's represent the point $\boldsymbol{\alpha}$ as $\boldsymbol{\alpha}=\boldsymbol{\alpha}^{(\mathbf{1})} \boldsymbol{\alpha}^{(2)}$, where $\boldsymbol{\alpha}^{(\mathbf{1})}=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \boldsymbol{\alpha}^{(2)}=\left(\alpha_{n+1}, \cdots, \alpha_{n+m}\right)$. The following two cases are possible.

Case 1. At least one of the sets $P_{n} \cup\left\{\boldsymbol{\alpha}^{(\mathbf{1})}\right\}$ or $P_{m} \cup\left\{\boldsymbol{\alpha}^{(2)}\right\}$ satisfies the condition i). Assume that the set $P_{n} \cup\left\{\boldsymbol{\alpha}^{(\mathbf{1})}\right\}$ satisfies the condition i). If $\boldsymbol{\alpha}^{(\mathbf{1})} \in P_{n}$, then we can choose two points $\boldsymbol{x}, \boldsymbol{y} \in$ B_{m} in the following way. If $\alpha_{i}=0$, then we will assume that $x_{i}=1$ and $y_{i}=2$, otherwise $x_{i}=$ $y_{i}=\alpha_{i}, n+1 \leq i \leq n+m$. Therefore, $\boldsymbol{\alpha}^{(2)} \notin B_{m}$, since $\boldsymbol{\alpha} \notin \mathrm{S}$ and $\boldsymbol{\alpha}^{(\mathbf{1})} \in P_{n}$. Hence, $\boldsymbol{\alpha}^{(2)}, \boldsymbol{x}$ and \boldsymbol{y} are pairwise distinct points. It is not difficult to see that $\boldsymbol{\alpha}^{(1)} \boldsymbol{x}, \boldsymbol{\alpha}^{(\mathbf{1})} \boldsymbol{y} \in P_{n} B_{m}$. Claim 1
implies that $\boldsymbol{\alpha}^{(1)} \boldsymbol{\alpha}^{(2)}+\boldsymbol{\alpha}^{(\mathbf{1})} \boldsymbol{x}+\boldsymbol{\alpha}^{(1)} \boldsymbol{y}=\mathbf{0}(\bmod 3)$, which contradicts the assumption that $\mathrm{S} \cup$ $\{\boldsymbol{\alpha}\}$ is a cap. If $\boldsymbol{\alpha}^{(\mathbf{1})} \notin P_{n}$, then the completeness of the P_{n} implies that there are two distinct points $\boldsymbol{\beta}, \boldsymbol{\gamma} \in P_{n}$, such that $\boldsymbol{\alpha}^{(\mathbf{1})}+\boldsymbol{\beta}+\boldsymbol{\gamma}=\mathbf{0}(\bmod 3)$. Now, as described above, we will choose two points $\boldsymbol{x}, \boldsymbol{y} \in B_{m}$ in the following way. If $\alpha_{i}=0$, then we will take $x_{i}=1$ and $y_{i}=2$, otherwise $x_{i}=y_{i}=\alpha_{i}, n+1 \leq i \leq n+m$. The choice of the points $\boldsymbol{x}, \boldsymbol{y}$ implies that $\boldsymbol{x}, \boldsymbol{y} \in$ B_{m} and $\boldsymbol{\alpha}^{(\mathbf{2})}+\boldsymbol{x}+\boldsymbol{y}=\mathbf{0}(\bmod 3)$. Therefore, $\boldsymbol{\alpha}^{(\mathbf{1})} \boldsymbol{\alpha}^{(2)}+\boldsymbol{\beta} \boldsymbol{x}+\boldsymbol{\gamma} \boldsymbol{y}=\mathbf{0}(\bmod 3)$, which contradicts the assumption that $\mathrm{S} \cup\{\boldsymbol{\alpha}\}$ is a cap. Similarly, one can prove the case, when the set $P_{m} \cup\left\{\boldsymbol{\alpha}^{(2)}\right\}$ satisfies the condition i), is impossible.

Case 2. Both sets $P_{n} \cup\left\{\boldsymbol{\alpha}^{(\mathbf{1})}\right\}$ and $P_{m} \cup\left\{\boldsymbol{\alpha}^{(2)}\right\}$ do not satisfy the condition i). Therefore, the condition i) for the set $P_{n} \cup\left\{\boldsymbol{\alpha}^{(\mathbf{1})}\right\}$ follows that there is a point $\boldsymbol{\beta} \in P_{n}$, such that if $\alpha_{i}=0$, then $\beta_{i} \neq 0$ and if $\beta_{i}=0$, then $\alpha_{i} \neq 0,1 \leq i \leq n$. We will choose the point $\boldsymbol{x} \in B_{n}$ in the following way. If $\alpha_{i}=0$, then $x_{i}=\beta_{i}^{-1}$ and if $\beta_{i}=0$, then $x_{i}=\alpha_{i}^{-1}$, otherwise, using Claim 2, we can assume that $x_{i}=\beta_{i}=\alpha_{i}, 1 \leq i \leq n$. By the same reason, the condition i) for the set $P_{m} \cup\left\{\boldsymbol{\alpha}^{(2)}\right\}$ implies that there is a point $\gamma \in P_{m}$, so that if $\alpha_{i}=0$, then $\gamma_{i} \neq 0$ and if $\gamma_{i}=0$, then $\alpha_{i} \neq$ $0, n+1 \leq i \leq n+m$. In the same manner, we will choose the point $\boldsymbol{y} \in B_{m}$. If $\alpha_{i}=0$, then $y_{i}=\gamma_{i}^{-1}$ and if $\gamma_{i}=0$, then $y_{i}=\alpha_{i}^{-1}$, otherwise, by Claim 2, we can assume that $y_{i}=\gamma_{i}=\alpha_{i}$, $n+1 \leq i \leq n+m)$. It is obvious that $\boldsymbol{\beta} \boldsymbol{y} \in P_{n} B_{m}$ and $\boldsymbol{x} \boldsymbol{\gamma} \in B_{n} P_{m}$. The choice of the points $\boldsymbol{x}, \boldsymbol{y}$ implies that $\boldsymbol{\alpha}^{(\mathbf{1})}+\boldsymbol{\beta}+\boldsymbol{x}=\mathbf{0}(\bmod 3)$ and $\boldsymbol{\alpha}^{(2)}+\boldsymbol{\gamma}+\boldsymbol{y}=\mathbf{0}(\bmod 3)$. Therefore, $\boldsymbol{\alpha}^{(\mathbf{1})} \boldsymbol{\alpha}^{(\mathbf{2})}+$ $\boldsymbol{\beta} \boldsymbol{y}+\boldsymbol{x} \boldsymbol{\gamma}=\mathbf{0}(\bmod 3)$, which again contradicts the assumption that $\mathrm{S} \cup\{\boldsymbol{\alpha}\}$ is a cap.

Corollary 1: For the given natural numbers n and $m, s_{n+m, 3} \geq\left|P_{n}\right|\left|B_{m}\right|+\left|B_{n}\right|\left|P_{m}\right|$.

Corollary 2: For every natural number $n, s_{n+1,3} \geq 2\left|P_{n}\right|+\left|B_{n}\right|$.

Theorem 4: If P_{n} and P_{m} are constructed by Theorem 1 or by Theorem 2, then for the given natural numbers n and $m, S=P_{n} P_{m}\{0\} \cup P_{n} B_{m}\{1\} \cup B_{n} P_{m}\{1\} \cup B_{n+m}\{2\}$ is a complete cap in the geometry $A G(n+m+1,3)$.

Proof. First we will prove that the set $S=P_{n} P_{m}\{0\} \cup P_{n} B_{m}\{1\}+B_{n} P_{m}\{1\}+B_{n+m}\{2\}$ is a cap by contradiction. Assume that there are three distinct points $\boldsymbol{\alpha}=$ $\left(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1}, \ldots, \alpha_{n+m}, \alpha_{n+m+1}\right), \quad \boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{n}, \beta_{n+1}, \ldots, \beta_{n+m}, \beta_{n+m+1}\right), \quad \boldsymbol{\gamma}=$ $\left(\gamma_{1}, \ldots, \gamma_{n}, \gamma_{n+1}, \ldots, \gamma_{n+m}, \gamma_{n+m+1}\right) \in S$, such that $\boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma}=\mathbf{0}(\bmod 3)$. Therefore, $\boldsymbol{\alpha}^{(\mathbf{1})}+$ $\boldsymbol{\beta}^{(\mathbf{1})}+\boldsymbol{\gamma}^{(\mathbf{1})}=\mathbf{0}(\bmod 3), \boldsymbol{\alpha}^{(\mathbf{2})}+\boldsymbol{\beta}^{(2)}+\boldsymbol{\gamma}^{(2)}=\mathbf{0}(\bmod 3)$ and $\alpha_{n+m+1}+\beta_{n+m+1}+\gamma_{n+m+1}=$ $\mathbf{0}(\bmod 3)$, where $\boldsymbol{\alpha}^{(\mathbf{1})}=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \boldsymbol{\alpha}^{(\mathbf{2})}=\left(\alpha_{n+1}, \cdots, \alpha_{n+m}\right), \boldsymbol{\beta}^{(\mathbf{1})}=\left(\beta_{1}, \cdots, \beta_{n}\right), \boldsymbol{\beta}^{(\mathbf{2})}=$ $\left(\beta_{n+1}, \cdots, \beta_{n+m}\right), \quad \boldsymbol{\gamma}^{(\mathbf{1})}=\left(\gamma_{1}, \cdots, \gamma_{n}\right)$ and $\boldsymbol{\gamma}^{(2)}=\left(\gamma_{n+1}, \cdots, \gamma_{n+m}\right)$. Claim 1 implies that $\alpha_{n+m+1}=\beta_{n+m+1}=\gamma_{n+m+1}$ or $\alpha_{n+m+1}, \beta_{n+m+1}$, and γ_{n+m+1} are pairwise distinct numbers. Hence, the following four cases are possible.

Case 1. $\alpha_{n+m+1}=\beta_{n+m+1}=\gamma_{n+m+1}=0$. Therefore, $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} \in P_{n} P_{m}\{0\}, \boldsymbol{\alpha}^{(\mathbf{1})}, \boldsymbol{\beta}^{\mathbf{(1)}}, \boldsymbol{\gamma}^{(\mathbf{1})} \in P_{n}$ and $\boldsymbol{\alpha}^{(2)}, \boldsymbol{\beta}^{(2)}, \boldsymbol{\gamma}^{(2)} \in P_{m}$. From the definition of P_{n} and P_{m} and the two relations $\boldsymbol{\alpha}^{(\mathbf{1})}+\boldsymbol{\beta}^{(\mathbf{1})}+$
$\boldsymbol{\gamma}^{(\mathbf{1})}=0(\bmod 3), \boldsymbol{\alpha}^{(\mathbf{2})}+\boldsymbol{\beta}^{(\mathbf{2})}+\boldsymbol{\gamma}^{(\mathbf{2})}=\mathbf{0}(\bmod 3)$ it follows that $\boldsymbol{\alpha}^{(\mathbf{1})}=\boldsymbol{\beta}^{(\mathbf{1})}=\boldsymbol{\gamma}^{(\mathbf{1})}$ and $\boldsymbol{\alpha}^{(2)}=\boldsymbol{\beta}^{(2)}=\boldsymbol{\gamma}^{(2)}$. Hence, $\boldsymbol{\alpha}=\boldsymbol{\beta}=\boldsymbol{\gamma}$, which contradicts the assumption that $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}$ are pairwise distinct points.

Case 2. $\alpha_{n+m+1}=\beta_{n+m+1}=\gamma_{n+m+1}=1$. Assume that $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} \in P_{n} B_{m}\{1\}$. Then $\boldsymbol{\alpha}^{(\mathbf{1})}, \boldsymbol{\beta}^{(1)}, \boldsymbol{\gamma}^{(\mathbf{1})} \in P_{n}$ and $\boldsymbol{\alpha}^{(\mathbf{2})}, \boldsymbol{\beta}^{(\mathbf{2})}, \boldsymbol{\gamma}^{(\mathbf{2})} \in B_{m}$. The definition of P_{n} implies that $\boldsymbol{\alpha}^{(\mathbf{1})}=\boldsymbol{\beta}^{(\mathbf{1})}=$ $\boldsymbol{\gamma}^{(1)}$, since $\boldsymbol{\alpha}^{(\mathbf{1})}+\boldsymbol{\beta}^{(\mathbf{1})}+\boldsymbol{\gamma}^{(\mathbf{1})}=\mathbf{0}(\bmod 3)$. Because $\boldsymbol{\alpha}^{(2)}+\boldsymbol{\beta}^{(2)}+\boldsymbol{\gamma}^{(\mathbf{2})}=\mathbf{0}(\bmod 3)$, Claim 1 implies that $\alpha^{(2)}=\boldsymbol{\beta}^{(2)}=\boldsymbol{\gamma}^{(2)}$. Therefore, $\boldsymbol{\alpha}=\boldsymbol{\beta}=\boldsymbol{\gamma}$, which, again contradicts the assumption that $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}$ are pairwise distinct points. Similarly, one can prove that the case is impossible, when $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} \in B_{n} P_{m}\{1\}$. Therefore, two points, say $\boldsymbol{\alpha}, \boldsymbol{\beta} \in P_{n} B_{m}\{1\}$ and $\boldsymbol{\gamma} \in$ $B_{n} P_{m}\{1\}$. The definition of P_{n} implies that there is i, such that $\alpha_{i}=\beta_{i}=0,1 \leq i \leq n$, But by the definition of $B_{n}, \gamma_{i}=1$ or 2 . Hence, $\alpha_{i}+\beta_{i}+\gamma_{i} \neq 0(\bmod 3)$, which contradicts that $\boldsymbol{\alpha}+$ $\boldsymbol{\beta}+\boldsymbol{\gamma}=\mathbf{0}(\bmod 3)$. In a similar manner, one can prove that the case is impossible, when two points from $\boldsymbol{\alpha}, \boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ belong to $B_{n} P_{m}$ and the third one belongs to $P_{n} B_{m}$. Therefore, S is a cap.

Case 3. $\alpha_{n+m+1}=\beta_{n+m+1}=\gamma_{n+m+1}=2$. Therefore $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} \in B_{n+m}\{2\}$. Hence, $\boldsymbol{\alpha}^{(\mathbf{1})} \boldsymbol{\alpha}^{(2)}$, $\boldsymbol{\beta}^{(1)} \boldsymbol{\beta}^{(2)}, \boldsymbol{\gamma}^{(1)} \boldsymbol{\gamma}^{(2)} \in B_{n+m}$ and $\boldsymbol{\alpha}^{(1)} \boldsymbol{\alpha}^{(2)}+\boldsymbol{\beta}^{(1)} \boldsymbol{\beta}^{(2)}+\boldsymbol{\gamma}^{(1)} \boldsymbol{\gamma}^{(2)}=\mathbf{0}(\bmod 3)$. Claim 1 implies that $\boldsymbol{\alpha}^{(1)} \boldsymbol{\alpha}^{(2)}=\boldsymbol{\beta}^{(1)} \boldsymbol{\beta}^{(2)}=\boldsymbol{\gamma}^{(1)} \boldsymbol{\gamma}^{(2)}$. This yields $\boldsymbol{\alpha}=\boldsymbol{\beta}=\boldsymbol{\gamma}$, which, again contradicts the assumption that $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}$ are pairwise distinct points.

Case $\alpha_{n+m+1}, \beta_{n+m+1}$ and γ_{n+m+1} are pairwise distinct numbers. Without loss of generality, let us assume that $\alpha_{n+m+1}=0, \beta_{n+m+1}=1$ and $\gamma_{n+m+1}=2$. Therefore, $\boldsymbol{\alpha} \in P_{n} P_{m}\{0\}, \boldsymbol{\beta} \in$ $P_{n} B_{m}\{1\}$ or $\boldsymbol{\beta} \in B_{n} P_{m}\{1\}$ and $\boldsymbol{\gamma} \in B_{n+m}\{2\}$. If $\boldsymbol{\beta} \in P_{n} B_{m}\{1\}$, then $\boldsymbol{\alpha}^{(\mathbf{1})}, \boldsymbol{\beta}^{(\mathbf{1})} \in P_{n}$. Hence, the definition of P_{n} implies that there is i, such that $\alpha_{i}=\beta_{i}=0,1 \leq i \leq n$. But, by the definition of $B_{n}, \gamma_{i}=1$ or 2 . Therefore, $\alpha_{i}+\beta_{i}+\gamma_{i} \neq 0(\bmod 3)$, which contradicts that $\boldsymbol{\alpha}^{(\mathbf{1})}+\boldsymbol{\beta}^{(\mathbf{1})}+$ $\boldsymbol{\gamma}^{(1)}=\mathbf{0}(\bmod 3)$. The last relation, in turn, implies that $\boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma} \neq \mathbf{0}(\bmod 3)$. In a similar manner, one can prove the case when $\boldsymbol{\beta} \in B_{n} P_{m}\{1\}$ is impossible. Hence, S is a cap.
Now we will prove the completeness of S also by contradiction. Let us assume that there is a point $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1}, \ldots, \alpha_{n+m}, \alpha_{n+m+1}\right)$, such that $\boldsymbol{\alpha} \notin S$ and $S \cup\{\boldsymbol{\alpha}\}$ is a cap. The following three cases are possible.

Case $\alpha_{n+m+1}=2$. Since $\boldsymbol{\alpha} \notin S$, we have $\left(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1}, \ldots, \alpha_{n+m}\right) \notin B_{n+m}$. We can choose two points $\boldsymbol{x}, \boldsymbol{y} \in B_{n+m}\{2\}$, such that, if $\alpha_{i}=0$ then $x_{i}=2$ and $y_{i}=1$, otherwise $x_{i}=y_{i}=$ $\alpha_{i}, 1 \leq i \leq n+m$. It is obvious that $\boldsymbol{x}\{2\}, \boldsymbol{y}\{2\} \in B_{n+m}\{2\}$ and $\boldsymbol{\alpha}, \boldsymbol{x}\{2\}, \boldsymbol{y}\{2\}$ are pairwise distinct points. Claim 1 implies that $\boldsymbol{x}\{2\}+\boldsymbol{y}\{2\}+\boldsymbol{\alpha}=\mathbf{0}(\bmod 3)$, which contradicts the assumption that $S \cup\{\boldsymbol{\alpha}\}$ is a cap.

Case $\alpha_{n+m+1}=1$. Let's represent the point $\boldsymbol{\alpha}$ as $\boldsymbol{\alpha}=\boldsymbol{\alpha}^{(1)} \boldsymbol{\alpha}^{(2)}\{1\}$, where $\boldsymbol{\alpha}^{(\mathbf{1})}=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ and $\boldsymbol{\alpha}^{(2)}=\left(\alpha_{n+1}, \cdots, \alpha_{n+m}\right)$. Assume that at least one of the sets $P_{n} \cup\left\{\boldsymbol{\alpha}^{(\mathbf{1})}\right\}$ or $P_{m} \cup\left\{\boldsymbol{\alpha}^{(2)}\right\}$ satisfies the condition i), say $P_{n} \cup\left\{\boldsymbol{\alpha}^{(\mathbf{1})}\right\}$. First, suppose that $\boldsymbol{\alpha}^{(\mathbf{1})} \notin P_{n}$. Then the completeness of the set P_{n} follows that there are two points $\boldsymbol{\beta}, \boldsymbol{\gamma} \in P_{n}$, such that $\boldsymbol{\beta}+\boldsymbol{\gamma}+\boldsymbol{\alpha}^{(\mathbf{1})}=\mathbf{0}(\bmod 3)$. We will choose two points $\boldsymbol{x}, \boldsymbol{y} \in B_{m}$ in the following way. If $\alpha_{i}=0$, then $x_{i}=1$ and $y_{i}=2$,
otherwise $x_{i}=y_{i}=\alpha_{i}, n+1 \leq i \leq n+m$. From the choice of the points $\boldsymbol{x}, \boldsymbol{y}$ it follows that $\boldsymbol{x}, \boldsymbol{y} \in B_{m} \quad$ and $\quad \boldsymbol{\alpha}^{(2)}+\boldsymbol{x}+\boldsymbol{y}=\mathbf{0}(\bmod 3)$. Therefore, $\boldsymbol{\alpha}^{(\mathbf{1})} \boldsymbol{\alpha}^{(2)}\{1\}+\boldsymbol{\beta} \boldsymbol{x}\{1\}+\boldsymbol{\gamma} \boldsymbol{y}\{1\}=$ $\mathbf{0}(\bmod 3)$, which contradicts the assumption that $S \cup\{\boldsymbol{\alpha}\}$ is a cap. Otherwise, if $\boldsymbol{\alpha}^{(\mathbf{1})} \in P_{n}$, then $\boldsymbol{\alpha}^{(2)} \notin B_{m}$, because $\boldsymbol{\alpha} \notin S$. Then it is easy to see that $\boldsymbol{\alpha}^{(\mathbf{1})} \boldsymbol{\alpha}^{(2)}\{1\}+\boldsymbol{\alpha}^{(\mathbf{1})} \boldsymbol{x}\{1\}+\boldsymbol{\alpha}^{(\mathbf{1})} \boldsymbol{y}\{1\}=$ $\mathbf{0}(\bmod 3)$, which, again contradicts the assumption that $\mathrm{S} \cup\{\boldsymbol{\alpha}\}$ is a cap. Similarly, one can prove the case, when the set $P_{m} \cup\left\{\boldsymbol{\alpha}^{(2)}\right\}$ satisfies the condition i) is impossible. Therefore, both sets $P_{n} \cup\left\{\boldsymbol{\alpha}^{(1)}\right\}$ and $P_{m} \cup\left\{\boldsymbol{\alpha}^{(2)}\right\}$ do not satisfy the condition i). Hence, there is a point $\boldsymbol{\beta} \in P_{n}$, (respectively, $\gamma \in P_{m}$), such that if $\alpha_{i}=0$, then $\beta_{i} \neq 0$ and if $\beta_{i}=0$, then $\alpha_{i} \neq 0,1 \leq i \leq n$ (respectively, if $\alpha_{i}=0$, then $\gamma_{i} \neq 0$ and if $\gamma_{i}=0$, then $\alpha_{i} \neq 0, n+1 \leq i \leq n+m$). First, let's choose the point $\boldsymbol{x} \in B_{n}$ in the following way. If $\alpha_{i}=0$, then $x_{i}=\beta_{i}^{-1}$ and if $\beta_{i}=0$, then $x_{i}=\alpha_{i}^{-1}$, otherwise, by Claim 2, we can assume that $x_{i}=\beta_{i}=\alpha_{i}, 1 \leq i \leq n$. In the same manner, we will choose the point $\boldsymbol{y} \in B_{m}$. If $\alpha_{i}=0$, then $y_{i}=\gamma_{i}^{-1}$ and if $\gamma_{i}=0$, then $y_{i}=$ α_{i}^{-1}, otherwise, using Claim 2 , we can assume that $y_{i}=\gamma_{i}=\alpha_{i}, n+1 \leq i \leq n+m$). The choice of the points \boldsymbol{x} and \boldsymbol{y} implies that $\boldsymbol{\alpha}^{(1)} \boldsymbol{\alpha}^{(2)}\{1\}+\boldsymbol{\beta} \boldsymbol{y}\{1\}+\boldsymbol{x} \boldsymbol{\gamma}\{1\}=\mathbf{0}(\bmod 3)$, which again contradicts the assumption that $\mathrm{S} \cup\{\boldsymbol{\alpha}\}$ is a cap.

Case $\alpha_{n+m+1}=0$. Assume that at least one of the sets $P_{n} \cup\left\{\boldsymbol{\alpha}^{(\mathbf{1})}\right\}$ or $P_{m} \cup\left\{\boldsymbol{\alpha}^{(\mathbf{2})}\right\}$ does not satisfy the condition i), say the set $P_{n} \cup\left\{\boldsymbol{\alpha}^{(\mathbf{1})}\right\}$. Therefore, the condition i) implies that there is a point $\boldsymbol{\beta} \in P_{n}$, such that, if $\alpha_{i}=0$, then $\beta_{i} \neq 0$ and if $\beta_{i}=0$, then $\alpha_{i} \neq 0,1 \leq i \leq n$. We will choose the points $\boldsymbol{z}^{(\mathbf{1})} \in B_{n}$ and $\boldsymbol{z}^{(\mathbf{2})}, \boldsymbol{y} \in B_{m}$ in the following way. First let's choose $\boldsymbol{z}^{(\mathbf{1})}$. If $\alpha_{i}=0$, then $z_{i}=\beta_{i}^{-1}$ and if $\beta_{i}=0$, then $z_{i}=\alpha_{i}^{-1}$, otherwise, using Claim 2, we will assume that $z_{i}=\beta_{i}=\alpha_{i}, 1 \leq i \leq n$. Now we will choose the points $\mathbf{z}^{(2)}, \boldsymbol{y} \in B_{m}$ in the following way. If $\alpha_{i}=0$, then we will assume that $z_{i}=1$ and $y_{i}=2$, otherwise $z_{i}=y_{i}=\alpha_{i}, n+1 \leq i \leq n+$ m. It is easy to see that $\boldsymbol{\beta} \boldsymbol{y}\{1\} \in P_{n} B_{m}\{1\}, \boldsymbol{z}^{(1)} \boldsymbol{z}^{(2)}\{2\} \in B_{n+m}\{2\}$. The choice of the points $\boldsymbol{z}^{(1)}, \boldsymbol{z}^{(2)}$ and \boldsymbol{y} imply that $\boldsymbol{\alpha}^{(1)} \boldsymbol{\alpha}^{(2)}\{0\}+\boldsymbol{\beta} \boldsymbol{y}\{1\}+\boldsymbol{z}^{(1)} \boldsymbol{z}^{(2)}\{2\}=\mathbf{0}(\bmod 3)$, which contradicts the assumption that $S \cup\{\boldsymbol{\alpha}\}$ is a cap. Similarly, one can prove the case is impossible, when the set $P_{m} \cup\left\{\boldsymbol{\alpha}^{(2)}\right\}$ does not satisfy the condition i). Therefore, both sets $P_{n} \cup\left\{\boldsymbol{\alpha}^{(1)}\right\}$ and $P_{m} \cup$ $\left\{\boldsymbol{\alpha}^{(2)}\right\}$ are satisfying the condition i). Since $\boldsymbol{\alpha} \notin S$, therefore either $\boldsymbol{\alpha}^{(1)} \notin P_{n}$ or $\boldsymbol{\alpha}^{(2)} \notin P_{m}$. If $\boldsymbol{\alpha}^{(1)} \notin P_{n}$ and $\boldsymbol{\alpha}^{(2)} \in P_{m}$, then the completeness of P_{n} follows that there are two points $\boldsymbol{x}, \boldsymbol{y} \in$ P_{n}, so that $\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{\alpha}^{(1)}=\mathbf{0}(\bmod 3)$. Since $\boldsymbol{x}, \boldsymbol{y} \in P_{n}$ and $\boldsymbol{\alpha}^{(2)} \in P_{m}$, we have $\boldsymbol{x} \boldsymbol{\alpha}^{(2)}, \boldsymbol{y} \boldsymbol{\alpha}^{(2)} \in$ $P_{n} P_{m}$ and $\boldsymbol{x} \boldsymbol{\alpha}^{(2)}\{0\}+\boldsymbol{y} \boldsymbol{\alpha}^{(2)}\{0\}+\boldsymbol{\alpha}^{(1)} \boldsymbol{\alpha}^{(2)}\{0\}=\mathbf{0}(\bmod 3)$, which contradicts the assumption that $S \cup\{\boldsymbol{\alpha}\}$ is a cap. The case, when $\boldsymbol{\alpha}^{(\mathbf{2})} \notin P_{m}$ and $\boldsymbol{\alpha}^{(\mathbf{1})} \in P_{n}$ is analogous to the above described one and therefore is impossible. Hence, $\boldsymbol{\alpha}^{(1)} \notin P_{n}$ and $\boldsymbol{\alpha}^{(2)} \notin P_{m}$. Therefore, from the completeness of P_{n} and P_{m} it follows that there are points $\boldsymbol{\beta}, \boldsymbol{\gamma} \in P_{n}$ and $\boldsymbol{\delta}, \boldsymbol{\theta} \in P_{m}$, so that $\boldsymbol{\beta}+$ $\boldsymbol{\gamma}+\boldsymbol{\alpha}^{(1)}=\mathbf{0}(\bmod 3)$ and $\boldsymbol{\delta}+\boldsymbol{\theta}+\boldsymbol{\alpha}^{(2)}=\mathbf{0}(\bmod 3)$. The last two relations imply that $\boldsymbol{\alpha}^{(1)} \boldsymbol{\alpha}^{(2)}\{0\}+\boldsymbol{\beta} \boldsymbol{\delta}\{0\}+\boldsymbol{\gamma} \boldsymbol{\theta}\{0\}=\mathbf{0}(\bmod 3)$, which contradicts the assumption that $\mathrm{S} \cup\{\boldsymbol{\alpha}\}$ is a cap.

Corollary 3: For the given natural numbers n and $m, s_{n+m+1,3} \geq\left|P_{n}\right|\left|P_{m}\right|+$ $\left|P_{n}\right|\left|B_{m}\right|+\left|B_{n}\right|\left|P_{m}\right|+\left|B_{n+m}\right|$.

Corollary 4: $s_{5,3} \geq 42$.
Proof. By definition $P_{1}=\{(0)\}$. From Theorem 1 it follows that $P_{3}=P_{1+1+1}=P_{1} P_{1} B_{1} \cup$ $P_{1} B_{1} P_{1} \cup B_{1} P_{1} P_{1}=\{(0,0,1),(0,0,2),(0,1,0),(0,2,0),(1,0,0),(2,0,0)\}$. It is easy to see that $\left|B_{n}\right|=2^{n}$. Therefore, $s_{5,3} \geq\left|P_{3}\right|\left|P_{1}\right|+\left|P_{3}\right|\left|B_{1}\right|+\left|B_{3}\right|\left|P_{1}\right|+\left|B_{4}\right|=6 \times 1+6 \times 2+8 \times 1+$ $16=42$.

3. Conclusion

Notice that the cardinality of P_{n} obtained by Theorem 1 (Theorem 2) [16, 17], essentially depends on the representation of n as the sum of three (six) natural numbers. Presenting the natural numbers as the sum of six natural numbers and applying Theorem 2, for some $n \geq 6$ in some cases, one can obtain larger complete P_{n} sets than those, which are constructed by Theorem 1. It is easy to check that $\left|P_{1}\right|=1,\left|P_{2}\right|=2$, and $\left|P_{1+1+1}\right|=6 .\left|P_{2+1+1}\right|=12,\left|P_{3+1+1}\right|=32$, $\left|P_{1+1+1+1+1+1}\right|=80,\left|P_{7}\right|=\left|P_{3+3+1}\right|=168,\left|P_{8}\right|=\left|P_{1+1+1+1+1+3}\right|=400,\left|P_{9}\right|=\left|P_{3+3+3}\right|=$ 864... It is not difficult to see that the maximal size $\left|P_{n}\right|>2^{n}$, if $n>5$. Therefore, to construct large complete caps it is convenient to use Corollary 2, but for small complete caps one can use Theorem 4.

References

[1] R. C. Bose, "Mathematical theory of the symmetrical factorial design", Sankhya, vol. 8, pp. 107-166, 1947.
[2] B. Qvist, "Some remarks concerning curves of the second degree in a finite plane", Ann Acad. Sci. Fenn, Ser. A, vol. 134, p. 27. 1952.
[3] G. Pellegrino, "Sul Massimo ordine delle calotte in $S_{4,3}$ ", Matematiche (Catania), vol. 25, pp. 1-9, 1970.
[4] R. Hill, "On the largest size of cap in $S_{5,3}$ ", Atti Accad Naz.Lincei Rendicondi, vol. 54, pp. 378-384, 1973.
[5] Y. Edel, S. Ferret, I. Landjev and L. Storme, "The classification of the largest caps in AG(5, 3)", Journal of Combinatorial Theory, ser. A, vol. 99, pp. 95-110, 2002.
[6] Y. Edel and J. Bierbrauer, "41 is the largest size of a cap in $P G(n, 3)$ ", Designs, Codes and Cryptography, vol. 16, pp. 151-160, 1999.
[7] A. Potechin, "Maximal caps in $\operatorname{AG}(6,3)$ ", Designs, Codes and Cryptography, vol. 46, pp. 243-259, 2008.
[8] J.W. Hirschfeld and L. Storme, "The packing problem in statistics, coding theory and finite projective spaces’’, Journal of Statistical Planning and Inference 72, pp. 355-380, 1998.
[9] J.W. Hirschfeld and L. Storme, "The packing problem in statistics, coding theory and finite projective spaces'’, Proceeding of the Fourth Isle of Thorns Conference, pp. 201246, July 16-21, 2000.
[10] J. Bierbrauer and Y. Edel, "Large caps in projective Galois spaces", In: Current topics in Galois geometry, Editors J. De Beule and L.Storm, pp. 87-104, 2012.
[11] A. A. Davidov, G. Faina, S. Marcugini and F. Pambianco, "Computer search in projective planes for the sizes of complete arcs", J. Geometry, vol. 82, pp. 50-62, 2005.
[12] A. A. Davidov and P. R. J. Ostergard, "Recursive constructions of complete caps", J. Statist. Planning Infer, vol. 95, pp. 167-173, 2001.
[13] M. Geuletti, "Small complete caps in Galois affine spaces", J. Algebr. Comb. Vol. 25, pp.149-168, 2007.
[14] K. Karapetyan, "Large Caps in Affine Space", Proceedings of International Conference Computer Science and Information Technologies, Yerevan, Armenia, pp. 82-83, 2015.
[15] K. Karapetyan, "On the complete caps in Galois affine space $A G(n, 3)$ ", Proceedings of International Conference Computer Science and Information Technologies, Yerevan, Armenia, p. 205, 2017.
[16] I.A. Karapetyan and K.I. Karapetyan. "The Complete Caps in Projective Geometry
 35-44, 2021.
[17] I. Karapetyan and K. Karapetyan, "Complete Caps in Projective Geometry PG(n,3)", Proceedings of International Conference Computer Science and Information Technologies, Yerevan, Armenia, pp. 57-60, 2021.

Yuphti 5 . Yupuwutinjuis

Uưఝnఛุnư

Полные шапки в аффинной геометрии $\operatorname{AG}(\boldsymbol{n}, 3)$

Карен И. Карапетян
Институт проблем информатики и автоматизации НАН РА
e-mail: karen-karapetyan@iiap.sci.am

Abstract

Аннотация

Рассматривается задача построения полных шапок в аффинной геометрии $A G(n, 3)$ размерности n над полем $F_{3}=\{0,1,2\}$. Шапка - это набор точек, никакие три из которых не коллинеарны. С помощью понятия множества P_{n}, разработаны две новые конструкции построения полных шапок.

Ключевые слова: аффинная геометрия, проективная геометрия, точки, шапки, полные шапки.

