Some Results on Palette Index of Cartesian Product Graphs

Khachik S. Smbatyan
Yerevan State University
e-mail: smbatyan1729@gmail.com

Abstract

Given a proper edge coloring α of a graph G, we define the palette $S_{G}(v, \alpha)$ of a vertex $v \in V(G)$ as the set of all colors appearing on edges incident to v. The palette index $\check{s}(G)$ of G is the minimum number of distinct palettes occurring in a proper edge coloring of G. The windmill graph $W d(n, k)$ is an undirected graph constructed for $k \geq$ 2 and $n \geq 2$ by joining n copies of the complete graph K_{k} at a shared universal vertex. In this paper, we determine the bound on the palette index of Cartesian products of complete graphs and simple paths. We also consider the problem of determining the palette index of windmill graphs. In particular, we show that for any positive integers $n, k \geq 2, \check{s}(W d(n, 2 k))=n+1$.

Keywords: Edge coloring, Proper edge coloring, Palette, Palette index, Cartesian product, Windmill graph.
Article info: Received 12 February 2021; accepted 8 May 2021.

1. Introduction

Throughout this paper, a graph G always means a finite undirected graph without loops, parallel edges, and it does not contain isolated vertices. Let $V(G)$ and $E(G)$ denote the sets of vertices and edges of a graph G, respectively. The degree of a vertex v in G is denoted by $d_{G}(v)$, and the maximum degree of vertices in G by $\Delta(G)$. The terms and concepts that we do not define can be found in [1].

An edge coloring of a graph G is an assignment of colors to the edges of G : it is proper if adjacent edges receive distinct colors. The minimum number of colors required in a proper edge coloring of a graph G is called the chromatic index of G and denoted by $\chi^{\prime}(G)$. By Vizings theorem [9], the chromatic index of G equals either $\Delta(G)$ or $\Delta(G)+1$. A graph with $\chi^{\prime}(G)=\Delta(G)$ is called Class 1, while a graph with $\chi^{\prime}(G)=\Delta(G)+1$ is called Class 2.

In this paper, we consider a chromatic parameter called the palette index of a simple graph G. A proper edge-coloring of a graph defines at each vertex $v \in V(G)$ the set of colors of its incident edges. That set is called the palette of v and denoted by $S_{G}(v, \alpha)$. The minimum number of palettes, taken over all possible proper edge colorings of a graph G,
is called a palette index of a graph and denoted by $\check{s}(G)$ [2]. Proper edge colorings with the minimum number of distinct palettes were studied for the first time in 2014, by Horñák, Kalinowski, Meszka, and Woźniak [2]. They determined the palette index of complete graphs. Namely,

$$
\check{s}\left(K_{n}\right)= \begin{cases}1, & \text { if } \mathrm{n} \equiv 0(\bmod 2) \tag{1}\\ 3, & \text { if } \mathrm{n} \equiv 3(\bmod 4) \\ 4, & \text { if } \mathrm{n} \equiv 1(\bmod 4)\end{cases}
$$

Moreover, they also showed that the palette index of a d-regular graph is 1 if and only if the graph is of Class 1. If G is d-regular and of Class 2, then Vizings edge coloring theorem [9] implies that $3 \leq \check{s}(G) \leq d+1$, and the case $\check{s}(G)=2$ is not possible, as proved in [2]. There are few results about the palette index of non-regular graphs. Vizings edge coloring theorem also yields an upper bound on the palette index of a graph G with maximum degree Δ and without isolated vertices, mainly $\check{s}(G) \leq 2^{\Delta+1}-2$. In [6], Casselgren and Petrosyan provided an improvement and derived the following upper bound on the palette index of bipartite graphs:

$$
\begin{equation*}
\check{s}(G) \leq \sum_{d \in D_{\text {even }}(G)}\binom{\left\lceil\frac{\Delta(G)}{2}\right\rceil}{\frac{d}{2}}+\sum_{d \in D_{\text {odd }}(G)}\binom{\left\lceil\frac{\Delta(G)}{2}\right\rceil}{\frac{d+1}{2}}(d+1) \tag{2}
\end{equation*}
$$

where $D_{\text {odd }}(G)$ is the set of all odd degrees in G and $D_{\text {even }}(G)$ is the set of even degrees in G.

In [3], Bonvicini and Mazzuoccolo proved that if G is 4 -regular and of Class 2, then $\check{s}(G) \in\{3,4,5\}$, and that all these values are, in fact, attainable. Although it is possible to determine the exact value of the palette index for some classes of graphs, in general, it is an $N P$-complete problem, because from [4] it is known that computing the chromatic index of a given graph is an $N P$-complete problem.

In this paper, we provide upper and lower bounds on the palette index of Cartesian products of some graphs. We will give the exact number of palettes of $W d(n, 2 k)$ windmill graphs, as well as the upper and lower bounds for $W d(n, 2 k+1)$.

2. Preliminaries

In this section, we introduce some terminology and notation. A matching in a graph G is a set of pairwise independent edges of G. A matching that saturates all the vertices of G is called a perfect matching. Next, we need some additional definitions.

Definition 1: (Windmill graph). The windmill graph $W d(n, k)$ is an undirected graph constructed for $k \geq 2$ and $n \geq 2$ by joining n copies of the complete graph K_{k} at a shared universal vertex.

Definition 2: (Cartesian product of graphs). Let G and H be two graphs. The Cartesian product $G \square H$ of graphs G and H is a graph such that

- the vertex set of $G \square H$ is the Cartesian product $V(G) \times V(H)$.
- two vertices $\left(u, u_{1}\right)$ and $\left(v, v_{1}\right)$ are adjacent in $G \square H$ if and only if either
$-u=v$ and u_{1} is adjacent to v_{1} in H, or
$-u_{1}=v_{1}$ and u is adjacent to v in G.
Before we move on, we recall that the Cartesian product graph $G \square H$ decomposes into $|V(G)|$ copies of H and $|V(H)|$ copies of G. By the definition of Cartesian products of graphs, $G \square H$ has two types of edges: those the vertices of which have the same first coordinate, and those the vertices of which have the same second coordinate. The edges joining vertices with a given value of the first coordinate form a copy of H , so the edges of the first type form $n H$ $(|V(G)|=n)$. Similarly, the edges of the second type form $m G(|V(H)|=m)$, and the union is $G \square H$.

Definition 3: Given two graphs G and H, and a vertex $y \in V(H)$, the set $G^{y}=\{(x, y) \in$ $V(G \square H) \mid x \in V(G)\}$ is called a G-fiber in the Cartesian product of G and H. For $x \in V(G)$, the H-fiber is defined as ${ }^{x} H=\{(x, y) \in V(G \square H) \mid y \in V(H)\}$.
G-fibers and H-fibers can be considered as induced subgraphs when appropriate. In [8], authors define the projection to G, which is the map $p_{G}: V(G \square H) \rightarrow V(G)$ is defined by $p_{G}(x, y)=x$. Also we will need the projection to $H ; p_{H}: V(G \square H) \rightarrow V(H)$ is defined by $p_{H}(x, y)=y$.

In the proofs of our results, we also will follow some coloring ideas from [2]. Namely, we will use the coloring ideas described in the proofs of Proposition 5, which states that if $k \geq 0$, then $\check{s}\left(K_{4 k+3}\right)=3$, and Theorem 7, which shows that if $n=4 k+5, k \neq 1$, then $\check{s}\left(K_{n}\right)=4$.

3. Main Results

First, we will provide some results about the palette index of the Cartesian product of a cycle and simple path. Note that the palette index of $C_{n} \square P_{2}$ is equal to 1. Clearly, the Cartesian product of those graphs is a Class 1 regular graph and as mentioned above the palette index of Class 1 regular graph is equal to 1 .

Proposition 1: If $n=2 k$ and $m>2$, then $\check{s}\left(C_{n} \square P_{m}\right)=2$.
Proof. First note that $C_{n} \square P_{m}$ is not a regular graph, hence, $\check{s}\left(C_{n} \square P_{m}\right) \geq 2$. Let construct a coloring that will induce 2 distinct palettes.

Case 1. m is even. Every $C_{n}-f i b e r$ can be properly colored alternately with colors a_{1} and a_{2}. Because of the even length of cycles, we will get exactly one palette, denote it by $\left\{a_{1}, a_{2}\right\}$. Next, there are n-pieces of $P_{m}-$ fibers, and every $P_{m}-$ fiber can be properly colored alternately with colors a_{3} and a_{4}. As a result, the palette of vertices with degree 3 is $\left\{a_{1}, a_{2}, a_{3}\right\}$, and the palette of vertices with degree 4 is $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$.

Case 2. m is odd. Suppose that $V\left(P_{m}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and for any $i(1 \leq i \leq m-$ 1), $v_{i} v_{i+1} \in E\left(P_{m}\right)$. Let $\alpha: E\left(C_{n}\right) \rightarrow\left\{a_{1}, a_{2}\right\}$ be a proper edge coloring of C_{n}. Since $C_{n}^{v_{i}}, 1 \leq i \leq m$ is isomorphic to C_{n}; hence, $C_{n}^{v_{i}}(4 \leq i \leq m)$ can be properly colored with colors from the color-set $\left\{a_{1}, a_{2}\right\}: \forall\left(u, v_{i}\right),\left(u^{\prime}, v_{i}\right) \in V\left(C_{n}^{v_{i}}\right)$ if $\left(u, v_{i}\right)\left(u^{\prime}, v_{i}\right) \in E\left(C_{n} \square P_{m}\right)$, then we define a proper edge coloring γ as follows:

$$
\gamma\left(\left(u, v_{i}\right)\left(u^{\prime}, v_{i}\right)\right)=\alpha\left(p_{G}\left(u, v_{i}\right) p_{G}\left(u^{\prime}, v_{i}\right)\right)=\alpha\left(u u^{\prime}\right)=a
$$

where $a \in\left\{a_{1}, a_{2}\right\}$. Afterwards, the fibers $C_{n}^{v_{1}}, C_{n}^{v_{2}}$ and $C_{n}^{v_{3}}$ can be colored alternately with colors from the color-sets $\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{4}\right\}$ and $\left\{a_{1}, a_{3}\right\}$, respectively. Then we will color the edges joining $C_{n}^{v_{1}}$ to $C_{n}^{v_{2}}$ and $C_{n}^{v_{2}}$ to $C_{n}^{v_{3}}$ by the colors a_{3} and a_{2}, respectively. Observe that the remaining uncolored edges of P_{m}-fibers can be properly colored alternately with colors a_{3} and a_{4}; the obtained coloring γ is a proper edge coloring of $C_{n} \square P_{m}$ with a minimum number of palettes.

Using the same ideas makes it easy to obtain a coloring for $C_{2 n+1} \square P_{2 m}$, inducing 2 distinct palettes. When the number of vertices of the cycle and the number of vertices of the path are odd, we have the following theorem.

Theorem 1: If $n=2 k_{1}+1$ and $m=2 k_{2}+1, k_{1}, k_{2}>0$, then

$$
\check{s}\left(C_{n} \square P_{m}\right)=4 .
$$

Proof. Suppose that $V\left(P_{m}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $d_{P_{m}}\left(v_{1}\right)=d_{P_{m}}\left(v_{m}\right)=1$ and α is a coloring of $C_{n} \square P_{m}$ inducing $\check{s}\left(C_{n} \square P_{m}\right)$ distinct palettes. Let show that the value of the palette index is at least 4 .

Case 1. $\check{s}\left(C_{n} \square P_{m}\right)=1$. It follows that the graph is a regular graph, which is a contradiction.

Case 2. $\check{s}\left(C_{n} \square P_{m}\right)=2$. Denote by P_{1} and P_{2} palettes induced by α. Clearly, $P_{1} \cap P_{2} \neq \emptyset$, therefore there is a color $a \in P_{1} \cap P_{2}$ so that the edges colored with a form a perfect matching of the graph. However, $\left|V\left(C_{n} \square P_{m}\right)\right|$ is an odd number, which means that the graph cannot have a perfect matching, a contradiction.

Case 3. $\check{s}\left(C_{n} \square P_{m}\right)=3$. Denote by P_{1}, P_{2}, and P_{3} palettes induced by α. Suppose that $\left|P_{1}\right|=\left|P_{2}\right|=3$ and $\left|P_{3}\right|=4$. Clearly, there is no color belonging to all three palettes. Indeed, otherwise, that color would induce a perfect matching of $C_{n} \square P_{m}$, which is impossible. Assume that $\left(P_{1} \cup P_{2}\right) \backslash P_{3} \neq \emptyset$, then there is a color $a \in P_{1} \cup P_{2}$ such that the edges colored with a form a perfect matching for C_{n}, which is impossible too, but this also means that the set $P_{1} \cap P_{2} \cap P_{3}$ cannot be empty, a contradiction.

Now, suppose that $\left|P_{1}\right|=\left|P_{2}\right|=4$ and $\left|P_{3}\right|=3$. Clearly there is a color $a \in P_{1} \cap P_{2}$ and $a \notin P_{3}$. This implies that the edges colored with a form a perfect matching of $C_{n-2} \square P_{m}$, which is impossible. Hence, $\check{s}\left(C_{n} \square P_{m}\right) \geq 4$.

Next, we need to show the existence of a proper edge coloring α inducing four palettes. Assume that β is a proper edge coloring of C_{n} with colors from color-set $S=\left\{a_{1}, a_{2}, a_{3}\right\}$, inducing 3 distinct palettes. As we have already mentioned, $C_{n}^{v_{i}}, 1 \leq i \leq m-1$ can be properly colored with colors from the color-set S. Then for all $i(1 \leq i \leq m-1)$ the edge that joins $\left(u, v_{i}\right) \in V\left(C_{n}^{v_{i}}\right)$ and $\left(u, v_{i+1}\right) \in V\left(C_{n}^{v_{i+1}}\right)$ will be colored in one of the two ways, first if there is a color $a \in S$ that a does not belong to color-sets assigned to the incident edges of $\left(u, v_{i}\right)$ and $\left(u, v_{i+1}\right)$, then that edge will be colored with a. Otherwise it will be colored with a new color $a_{4} \notin S$. Thereby we constructed coloring of the subgraph of $C_{n} \square P_{m}$, that is isomorphic to $C_{n} \square P_{m-1}$, inducing two palettes $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$.

Note that the palette of the vertices of $C_{n}^{v_{m-1}}$ is $\left\{a_{1}, a_{2}, a_{3}\right\}$; hence, the colors assigned to the edges of $C_{n}^{v_{m-1}}$ divide that edge set into three disjoint sets: two sets X and Y, each having $\frac{n-1}{2}$ elements, and one one-element set, say $\left\{\left(u, v_{m-1}\right)\left(u_{1}, v_{m-1}\right)\right\}$. Without loss of generality, we may suppose that $\left(u, v_{m-1}\right)\left(u_{2}, v_{m-1}\right) \in Y$ and X, Y are the sets of edges colored with a_{1} and a_{2}, respectively. For all $\left(u^{\prime}, v_{m-1}\right)\left(u^{\prime \prime}, v_{m-1}\right) \in X$ let do the following changes: $\alpha\left(\left(u^{\prime}, v_{m-1}\right)\left(u^{\prime \prime}, v_{m-1}\right)\right)=a_{4}, \alpha\left(\left(u^{\prime}, v_{m-1}\right)\left(u^{\prime}, v_{m}\right)\right)=a_{2}$ and $\alpha\left(\left(u^{\prime \prime}, v_{m-1}\right)\left(u^{\prime \prime}, v_{m}\right)\right)=a_{2}$. Since $\left(u, v_{m-1}\right)$ is the only vertex that the recent changes did not
affect, $\alpha\left(\left(u, v_{m-1}\right)\left(u, v_{m}\right)\right)=a_{4}$. Finally, coloring the edge $\alpha\left(\left(u, v_{m}\right)\left(u_{1}, v_{m}\right)\right)=a_{5}$ and the remaining uncolored edges alternately with colors a_{2} and a_{3} will induce two new palettes; hence, $\check{s}\left(C_{n} \square P_{m}\right)=4$.

Next, we will examine the palette index of the Cartesian product of complete graphs and paths. Complete graph $K_{2 k}$ is of Class 1 and $\check{s}\left(K_{2 k}\right)=1$, therefore $\check{s}\left(K_{2 k} \square P_{2}\right)=1$. On the other hand, the minimum coloring of $K_{2 k+1}$ induces $2 k+1$ distinct palettes. Indeed, each palette has $2 k$ colors. This means that exactly one color is missing at each vertex. So we can use the minimum coloring of K_{n} for all K_{n}-fibers and color the edges joining them with missing colors, hence, $\check{s}\left(K_{2 k+1} \square P_{2}\right)=1$.

Corollary 1. If $n>2$ and $m>2$, then $\check{s}\left(K_{2 n} \square P_{m}\right)=2$.
Proof. Construction of a proper edge coloring of $K_{2 n} \square P_{m}$ is very similar to the steps that we have already described in Proposition 1, the single difference being that in this case we will color K_{n}-fibers with the minimum coloring described above.

Theorem 2: For any odd positive integers m and $k \geq 0$, we have

$$
\check{s}\left(K_{4 k+3} \square P_{m}\right)=4 .
$$

Proof. Let $V\left(P_{m}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $d_{P_{m}}\left(v_{1}\right)=d_{P_{m}}\left(v_{m}\right)=1$. As we have already mentioned above there is a proper edge coloring with a minimum number of distinct palettes $\alpha: E\left(K_{4 k+3}\right) \rightarrow S=\left\{a_{1}, a_{2}, a_{3}, \ldots a_{4 k+3}\right\}$ inducing $4 k+3$ different palettes. We will construct the coloring γ for $K_{4 k+3} \square P_{m}$ as follows; $\forall i(1 \leq i \leq m-1)$ and $\forall\left(u, v_{i}\right)\left(u^{\prime}, v_{i}\right) \in E\left(K_{4 k+3}^{v_{i}}\right)$ $\gamma\left(\left(u, v_{i}\right)\left(u^{\prime}, v_{i}\right)\right)$ will be set equal to $\alpha\left(u u^{\prime}\right)$. Note that for any $i(1 \leq i \leq m-1)$, the vertices $\left(u, v_{i}\right)$ and $\left(u, v_{i+1}\right)$ are joined with the edges of $P_{m}-$ fibers, and we have two possible cases for the coloring of these edges;

- if $S \backslash S_{K_{4 k+3} \square P_{m}}\left(\left(u, v_{i}\right)\right)=\{a\}$, then $\gamma\left(\left(u, v_{i}\right)\left(u, v_{i+1}\right)\right)=a$.
- if $S \backslash S_{K_{4 k+3} \square P_{m}}\left(\left(u, v_{i}\right)\right)=\emptyset$, then $\gamma\left(\left(u, v_{i}\right)\left(u, v_{i+1}\right)\right)=b, b \notin S$.

Note that the fiber $K_{4 k+3}^{v_{m-1}}$ always has more than $k+1$ edges colored with the same color. Assume that $M=\left\{\left(u_{i_{1}}, v_{m-1}\right)\left(u_{i_{2}}, v_{m-1}\right), \ldots,\left(u_{i_{2 k+1}}, v_{m-1}\right)\left(u_{i_{2 k+2}}, v_{m-1}\right)\right\}$ is the set of edges colored with $a^{\prime} \in S$. Now let recolor some edges. For any $j(1 \leq j \leq k+1)$;

$$
\begin{gathered}
\gamma\left(\left(u_{i_{2 j-1}}, v_{m-1}\right)\left(u_{i_{2 j}}, v_{m-1}\right)\right)=b, \\
\gamma\left(\left(u_{i_{s}}, v_{m-1}\right)\left(u_{i_{s}}, v_{m}\right)\right)=a^{\prime}, \forall s \in\{1,2, \ldots, 2 k+2\}, \\
\gamma\left(\left(u_{i}, v_{m-1}\right)\left(u_{i}, v_{m}\right)\right)=b, \forall u_{i} \in V\left(K_{4 k+3}^{v_{m-1}}\right) \backslash\left\{u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{2 k+2}}\right\}
\end{gathered}
$$

To color the edges of $K_{4 k+3}^{v_{m}}$, we will follow the coloring idea introduced in the proof of [2](Proposition 5). Using the color-set $S \cup\left\{b_{1}, b_{2}, \ldots b_{2 k+1}\right\} \cup\{b\}$ and taking the vertex set $X=\left\{u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{2 k}}\right\}, Y=V\left(K_{n}^{v_{m}}\right) \backslash\left(X \cup\left\{u_{i_{2 k+1}}\right\}\right)$ and one-element set $\left\{u_{i_{2 k+1}}\right\}$ will let us obtain coloring that induces 2 new palettes. Clearly, we can make the palette of the vertices from the vertex set X equal to $\left\{a_{1}, a_{2}, a_{3}, \ldots a_{4 k+3}\right\}$, causing new palettes only on the vertices from the vertex set Y and $\left\{u_{i_{2 k+1}}\right\}$; hence $\check{s}\left(K_{4 k+3} \square P_{m}\right) \leq 4$.

Now let us show that the palette index is at least 4 . Suppose first that $\check{s}\left(K_{4 k+3} \square P_{m}\right)=3$, and let α be the corresponding coloring of $K_{4 k+3} \square P_{m}$. Denote by P_{1}, P_{2} and P_{3} the palettes
caused by α. Let $V_{i}=\left\{x \in V: S(x, \alpha)=P_{i}\right\}, i=1,2,3$. First, there is no color belonging to all three palettes, otherwise this color would induce a perfect matching of $K_{4 k+3} \square P_{m}$, which is impossible.

Case 1. $\left|P_{1}\right|=\left|P_{2}\right|=n,\left|P_{3}\right|=n+1$. Note that $\left(P_{1} \cup P_{2}\right) \backslash P_{3}=\emptyset$; otherwise there is a color $a \in\left(P_{1} \cup P_{2}\right) \backslash P_{3}$ then the edges colored with a form a perfect matching of K_{n}, which is impossible. It follows that $P_{1} \cap P_{2} \cap P_{3} \neq \emptyset$, a contradiction.

Case 2. $\left|P_{1}\right|=\left|P_{2}\right|=n+1,\left|P_{3}\right|=n$. Clearly, there is an edge $e \in E\left(K_{4 k+3} \square P_{m},\right)$ joining V_{1} and V_{2}. Assume that $\alpha(e) \notin P_{3}$, then the edges colored with $\alpha(e)$ will form a perfect matching of $K_{4 k+1} \square P_{m}$, which is a contradiction.

Suppose next that $\check{s}\left(K_{4 k+3} \square P_{m}\right)=2$, the intersection of the induced palettes similarly cannot be an empty set. Hence, $\check{s}\left(K_{4 k+3} \square P_{m}\right) \neq 2$.
Also, note that constructed coloring will induce at most 5 palettes for $K_{4 k+5} \square P_{2 m+1}$, the single difference being that in this case we will color the fiber $K_{4 k+5}^{v_{m}}$ using the coloring constructed in the proof of [2](Theorem 7).

Corollary 2. If $k \geq 0$ and $m \geq 1$, then

$$
4 \leq \check{s}\left(K_{4 k+5} \square P_{2 m+1}\right) \leq 5
$$

Next results are about the palette index of windmill graphs.

Fig. 1. $W d(2,6)$ graph coloring.

Proposition 2: If $n, k \geq 2$, then

$$
\check{s}(W d(n, k)) \geq n+1 .
$$

Proof. Suppose that $\check{s}(W d(n, k))=m(m<n+1)$. There is a proper edge coloring of $W d(n, k)$ inducing m distinct palettes $P_{i}, i=1,2, \ldots, m$. Let V_{i} be the set of all vertices of K_{n} with palette P_{i} and let $n_{i}=\left|V_{i}\right|, i=1,2, \ldots, m$. Without loss of generality, suppose
that $\left|V_{m}\right|=n_{m}=1$ is a one-element set, say $\{u\}$. Assume that u is the shared vertex of $W d(n, k)$. Clearly, $\sum_{i=1}^{m} n_{i}=|V(W d(n, k))|=n(k-1)+1$. This implies that $\exists i(1 \leq i \leq m)$ that $n_{i} \geq k$. Indeed, if $n_{i}<k(1 \leq i \leq m)$, then it follows;

$$
\sum_{i=1}^{m} n_{i}=\sum_{i=1}^{m-1} n_{i}+1 \leq(m-1)(k-1)+1<n(k-1)+1=|V(W d(n, k))|
$$

which is impossible. Thus, $\exists j$ such that $\left|V_{j}\right|=n_{j}>k$. For any vertex of V_{j} there is an edge joining it with shared vertex u, and the number of such edges is equal to n_{j}. On the other hand, $n_{j}>\left|P_{j}\right|=k-1$, which is a contradiction; therefore $\check{s}(W d(n, k)) \geq n+1$.

At the same time the upper bound of the palette index of windmill graphs depends on the number of complete graphs.

Theorem 3: For any positive integers $n, k \geq 2$, we have $\check{s}(W d(n, 2 k))=n+1$.

Proof. We only need to show the existence of a coloring α inducing $n+1$ palette. Denote by u the shared vertex of $W d(n, 2 k)$. Note that $W d(n, 2 k)-u$ is a graph that consists of n components, and every component is a complete graph with $2 k-1$ vertices. For every $K_{2 k-1}$ complete graph exists coloring inducing $2 k-1$ palettes, and at each vertex, exactly one color is missing, which will be assigned to the edge joining that vertex and the shared vertex u. Clearly, this coloring will induce exactly one palette on every odd component, and as a result, we will construct coloring α that will induce $n+1$ distinct palettes.
Fig. 1 shows the proper edge coloring α of the graph $W d(2,6)$ inducing 3 distinct palettes.
We will also give an upper bound for the palette index of $W d(n, k)$ for any k odd number.
Corollary 3. For any positive integers $k, n \geq 2$, we have

$$
\check{s}(W d(n, k)) \leq \begin{cases}2 n+1, & \text { if } k \equiv 3(\bmod 4), \tag{3}\\ 3 n+1, & \text { if } k \equiv 1(\bmod 4) .\end{cases}
$$

Proof. Suppose that $K_{k}^{i}(1 \leq i \leq n)$ are the copies of the complete graph in $W d(n, k)$, and u is the shared universal vertex. Denote by $C_{1}, C_{2}, \ldots, C_{n}$ disjoint color-sets needed for a proper edge coloring of a complete graph that induces a minimum number of distinct palettes.

Case 1. $k \equiv 3(\bmod 4)$. We will use the coloring described in the proof of $[2]$ (Proposition 5). Assume that $\forall i(1 \leq i \leq n) \alpha_{i}$ is a proper edge coloring of K_{k}^{i} with color-set C_{i} inducing 3 distinct palettes. While constructing the α_{i} coloring, the complete graph's vertex set is partitioned into three sets. One of these sets is a one-element set, which induces a new unique palette. Taking $\{u\}$ as that set for any partition of $V\left(K_{k}^{i}\right)(1 \leq i \leq n)$ will let us obtain coloring of $W d(n, k)$ that induces at most $2 n+1$ distinct palettes.

Case 2. $k \equiv 1(\bmod 4)$. We will use the coloring described in the proof of [2](Theorem 7). Assume that $\forall i(1 \leq i \leq n) \alpha_{i}$ is a proper edge coloring of K_{k}^{i} with color-set C_{i} inducing 4 distinct palettes. In this case, coloring α_{i} also causes a new unique palette on the vertex of one-element set. Similar to the previous case, taking $\{u\}$ as that set for all partitions of $V\left(K_{k}^{i}\right)(1 \leq i \leq n)$ will let us obtain coloring of $W d(n, k)$ that induces $3 n+1$ distinct palettes.

4. Conclusion

In the current article we examined the palette index of Cartesian products of graphs. Namely, we determined the palette index of the Cartesian product of cycles and paths and constructed colorings based on the length of the cycle, inducing a minimum number of palettes. Next, we gave some results connected to the palette index of the Cartesian product of complete graphs and paths. We also considered the problem of determining the palette index of windmill graphs. In particular, we showed the existence of coloring α, such that the number of palettes of $W d(n, 2 k)$ for any $n, k \geq 2$ induced by α is equal to $n+1$. Moreover, we determined the upper bounds for the windmill graphs in case when the number of vertices of each complete graph is odd.

References

[1] D.B. West, Introduction to Graph Theory, N.J.: Prentice-Hall, 2001.
[2] M. Horňák, R. Kalinowski, M. Meszka and M. Woźniak, "Minimum number of palettes in edge colorings", Graphs and Combinatorics, vol. 30, pp. 619-626, 2014.
[3] S. Bonvicini and G. Mazzuoccolo, "Edge-colorings of 4-regular graphs with the minimum number of palettes", Graphs and Combinatorics, vol. 32, pp. 1293-1311, 2016.
[4] I. Holyer, "The NP-completeness of edge-coloring", SIAM Journal on Computing, vol. 10, pp. 718-720, 1981.
[5] M. Avesani, A. Bonisoli and G. Mazzuoccolo, "A family of multigraphs with large palette index", Ars Mathematica Contemporanea, vol. 17, pp. 115-124, 2019.
[6] C. J. Casselgren and P. A. Petrosyan, "Some results on the palette index of graphs", Discrete Mathematics and Theoretical Computer Science, vol. 21, no. 3.
[7] S. Fiorini and R.J. Wilson, "Edge-Colorings of Graphs", Research Notes in Mathematics, vol. 16, Pitman, London, UK, 1977.
[8] R. Hammack, W. Imrich, S. Klavžar, Handbook of Product Graphs Second Edition, CRC Press, 2011.
[9] V. G. Vizing, "On an estimate of the chromatic class of a p-graph", Diskret. Analiz 3, pp. 25-30, 1964.

Fum̌hl U. Uưpumjuai

 e-mail: smbatyan1729@gmail.com

Uưఝnఛ̆nư

 hintipu, ๆ-tiqunujumi upununnjui:

Некоторые результаты об индексе палитры декартово произведение графов

Хачик С. Смбатян
Ереванский государственный университет
e-mail: smbatyan1729@gmail.com

Abstract

Аннотация При правильной α-реберной раскраске графа G мы определяем палитру $S_{G}(v, \alpha)$ вершины $v \in V(G)$ как множество всех цветов, появляющихся на ребрах, смежных с v Индекс палитры $\check{s}(G)$ графа G является минимальным числом различных палитр, встречающихся при всех правильных реберных раскрасках G. В теории графов мельница $W d(n, k)$ - это неориентированный граф, построенный для $k \geq 2$ и $n \leq 2$ путём предприятий n копии полных графов K_{k} в одной общей вершине В этой статье мы даем оценку индекса палитры декартового произведения полных графов и простых путей. Мы также рассматриваем задачу определения индекса палитры графов мельниц. В частности, мы показываем, что для любых положительных целых чисел $k \geq 2$ и $n \leq 2, \check{s}(W d(n, 2 k))=n+1$.

Ключевые слова: реберная раскраска, правильная рёберная, раскраска, палитра, индекс палитры, декартово произведение, граф мельница.

