On Initial Segments of Turing Degrees Containing Simple T-Mitotic but not wtt-Mitotic Sets

Arsen H. Mokatsian

Institute for Informatics and Automation Problems of NAS RA
e-mail: arsemokatsian@gmail.com

Abstract

We consider the properties of computably enumerable (c.e.) Turing degrees containing sets, which possess the property of a T-mitotic splitting but don’t have a wtt-mitotic splitting.

It is proved that for any noncomputable c.e. degree b there exists a degree a, such that $a \leq b$ and a contains a simple T-mitotic set, which is not wtt-mitotic.

Keywords: Mitotic set, T-reducibility, wtt-reducibility, Simple set, Contiguous degree.

1. Introduction

We shall use the notions and terminology introduced in Soare [1], Rogers [2].

Notations.

We deal with sets and functions over the nonnegative integers $\omega = \{0, 1, 2, \ldots \}$.

Let $\omega_{ev} = \{x : (\exists k)(x = 2k)\}$; $\omega_{od} = \{x : (\exists k)(x = 2k + 1)\}$.

Let φ_e be the e^{th} partial computable function in the standard listing (Soare [1, p. 25]).

If $A \subseteq \omega$ and $e \in \omega$, let $\Phi^A_e(x) = \Phi_e(A : x) = \{e\}^A(x)$ (see Soare [1, pp. 48-50]).

χ_A denotes the characteristic function of A, which is often identified with A and written simply as $A(x)$.

Let $\varphi(x) \downarrow$ denotes that $\varphi(x)$ is defined, $\varphi(x) \uparrow$ denotes that $\varphi(x)$ is undefined.

$W_e = \text{dom } \varphi_e = \{x : \varphi_e(x) \downarrow\}$.

$\varphi_{e, at s+1}(x) \downarrow$ denotes $\varphi_{e, s+1}(x) \downarrow \& \varphi_{e, s}(x) \uparrow$.

$x \in W_{e, at s+1}$ denotes $x \in W_{e, s+1} - W_{e, s}$.

In the literature, Turing reducibility is usually taken as the main reducibility. If the word “reducibility” is used without a further explanation, it means, as a rule, Turing reducibility. If the term “degree of unsolvability” is used without a further explanation, the T-degree is usually meant.

Definition 1: The use function $u(A; e, x, s)$ is $1+$ (the maximum number used in computation if $\Phi^A_{es}(x) \downarrow$), and $= 0$, otherwise. The use function $u(A; e, x)$ is $u(A; e, x, s)$ if $\Phi^A_{es}(x) \downarrow$ for some s, and is undefined if $\Phi^A_{es}(x) \uparrow$.
Definition 2: A is computable in (Turing reducible to) B, written $A \leq_T B$, if $A = \Phi_e^B$ for some e (Soare [1, p. 50]).

Definition 3: A is weak truth-table reducible to B, written $A \leq_{wtt} B$, if $(\exists e) [A = \Phi_e^B \& (\exists \text{computable } f) (f(x) \geq u(B; e, x))]$ (where $u(B; e, x)$ is the use function from Definition 1) (Rogers [2, p. 158]).

Definition 4: If A is a noncomputable computably enumerable (c.e.) set, then a splitting of A is a pair A_1, A_2 of disjoint c.e. sets such that $A_1 \cup A_2 = A$ (Downey, Stob [3, p. 4]).

Definition 5: C.e. set A is T-mitotic (wtt-mitotic), if there is a splitting A_1, A_2 of A such that $A_1 \equiv_T A_2 \equiv_T A (A_1 \equiv_{wtt} A_2 \equiv_{wtt} A)$ (Downey, Stob [3, p. 83]).

Definition 6: (i) A set is immune, if it is infinite but contains no infinite c.e. set. (ii) A set is simple, if A is c.e. and \overline{A} is immune (Soare [1, p. 78]).

Definition 7: A c.e. degree a is contiguous if for every pair A, B of c.e. sets in a, $A \equiv_{wtt} B$ (Downey, Stob [3, p. 45]).

Note that each contiguous degree, by definition, doesn’t contain T-mitotic sets, which are not wtt-mitotic.

Lachlan proved the existence of nonmitotic c.e. set (Lachlan [4]).

Ladner proved the existence of completely mitotic c.e. degree (Ladner [5]).

Ladner and Sasso [6] proved, that for every nonzero c.e. degree b there is a nonzero c.e. degree $a \leq b$ such that a is contiguous (see also Downey, Stob [3]).

Thus, there is an infinite class of contiguous degrees, and these degrees, as we have mentioned, don’t contain T-mitotic sets, which are not wtt-mitotic.

Ingrassia ([7]) proved the density of nonmitotic c.e. sets (in R) (see also Downey, Slaman [8]).

E. J. Griffiths ([9]) proved the following Theorem: There exists a low c.e. degree u such that if v is a c.e. degree and $u \leq v$, then v is not completely mitotic.

2. Preliminaries, Basic Modules

Theorem 1: For any noncomputable c.e. degree b there is a degree a such that $a \leq b$ and a contains a simple T-mitotic, but not wtt-mitotic set.

Proof. (sketch) Let h be a general computable function that maps ω to ω^2. Let (Ψ_i, ψ_i) denotes the pair $(\Phi_{i_0}, \varphi_{i_0})$ for all i, where $h(i) = (i_0, i_1)$ (note that Ψ_i is wtt-reduction with ψ_i, denoting the corresponding use function).

It is known (Ladner [10]) that the computably enumerable set A is T-mitotic, $\iff A$ is T-autoreducible, and similarly, the computably enumerable set A is wtt-mitotic, $\iff A$ is wtt-autoreducible (Downey, Stob [3], see also Trakhtenbrot [11]).

Therefore, in order to achieve non-wtt-mitoticity, it is enough for us to achieve non-wtt-autoreducibility.

Thus, to prove our theorem, it is necessary to construct such a c.e. set A, so that the following requirements are met.
$R_e : \left(\exists x \right) \neg (\Psi_e(A \cup \{x\}; x) = A(x)), \text{ if } (\forall z \leq y)(\psi_e(z) \downarrow).$

$P_e : (W_e \text{ is infinite}) \Rightarrow (\exists x) \left(x \in W_e \& x \in A \right).$

Note that satisfying the R_e requirement (for all e) provides the infinity of the set A.

Order the requirements in the following priority ranking: $R_0, P_0, R_1, P_1, \ldots, R_n, P_n, \ldots$

Let $l(e, s) = \max \{ x : (\forall y < x) (\Psi_{e,s}(A_s \cup \{y\}; y) = A(y) \& (\forall z \leq x)(\psi_{e,z} \downarrow)) \}.$

The main strategy for satisfying R_e is the following: we select a number (the so-called follower) x (which should be accompanied by two more elements $x-2$ and $x-1$, and possibly, the third - \hat{x}; an exact definition of the attendant numbers of the follower x, namely $(x-2), (x-1), \hat{x}$, will be given hereinafter), we wait until $l(e, s) > x$ and enumerate x in A_{s+1}, if $(\forall z < x)(\psi_{e,z} \downarrow)$, setting $r(e, s+1) = u(x, e, s)$, where $u(x, e, s) = u(\Psi_{e,s}(A_s \cup \{x\}; x)).$

An B-permitting procedure is introduced in order to provide $A \leq_T B$ (where B is a c.e. set from degree b).

To satisfy the requirement of R_e at each stage, we have a finite set of followers $x_{1,s}, < \ldots < x_{n,s}$. In this construction, a modification of the B-permitting method is used. We treat the interval $[0, \ldots, i]$ as allowing for $x_{i,s}$.

To satisfy the requirement of P_e at each stage, we have a finite set of followers $y_{1,s}, < \ldots < y_{n,s}$. For requirement P_e, the usual B-permitting method is used.

The construction will be such that if eventually we have $\Psi_e(A \cup \{x\}; x) = A(x) \& \psi_e$ is a total function, then it will be possible to compute B.

The ground of satisfactions for requirements of R_e and P_e will be given below.

2.1 Basic Module for R_e

The followers $x_{1,s}, \ldots, x_{n,s}$ satisfy the following rules below.

Appointment. If $x_{i,s}$ is currently defined and $x_{i+1,s}$ is not, then if $l(e, s) > x_{i,s}$, declare $x_{i,s}$ as active, and set $x_{i+1,s} = \mu z (z \geq s + 2 \& (\exists k) (z = 2k))$. Set $\check{r}(e, s+1) = \max(u(x_{k,s}, e, s) : k \leq i)$. To get an idea of the restriction function $\check{r}(e, s)$, we give its definition, although it is not used in the basic module.

We say that $x_{i,s}$ is superactive, if $x_{i,s} - 2$ and $x_{i,s} - 1$ belong to A_s.

Permission. If $x_{i,s}$ is active and $i \in B_{ats}$, then if

(i) $(\exists j > i) [x_{j,s} \text{ is superactive} \& x_{j,s} \notin A_s]$, let $j_0 = \mu z$ [$x_{z,s} \text{ is superactive} \& x_{z,s} \notin A_z$]. Then we enumerate the numbers $x_{j_0,s}, \hat{x}_{j_0,s}$ into A_{s+1} (where $\hat{x}_{j_0,s} = \psi_e(x_{j_0,s})$). Cancel $x_{k,s}$ for all $(k > j_0)$. We will do the same with the accompanying elements of the corresponding followers.

(ii) if (i) and $(\neg \exists j) [x_{j,s} \in A_s]$ does not hold, then we enumerate the numbers $x_{i,s} - 2, x_{i,s} - 1$ into A_{s+1}. Cancel $x_{k,s}$ for all $(k > i)$. We will do the same with the accompanying elements of the corresponding followers.

For any i such that the follower $x_{i,s}$ is not canceled at the end of the part “permission” of the basic module and is active, let’s set $x_{i,s+1} = x_{i,s}$. We will do the same with the accompanying elements of the corresponding followers.

The “cancellation” rule, which is present in the proof of Theorem 4.8 (Downey, Slaman [8]), in this case it will be necessary to note the effect of the requirements of R_i and P_j (where $j < e$) on satisfying the requirement R_e, but not to describe the basic module itself for R_e.
2.2 Basic Module for P_e

The followers $y_{1,s}, \ldots, y_{n,s}$ satisfy the following rules below.

Appointment. If $y_{i,s}$ is currently defined and $y_{i+1,s}$ is not, then if $(\exists z) (z \in W_e \land z \geq y_{i,s})$, declare $y_{i,s}$ as active, and set $y_{i+1,s+1} = \mu z (z \geq s \land (\exists k) (z = 2k))$.

Permission. If $y_{i,s}$ is active and $i \in B_{at,s}$, then enumerate the numbers $y_{i,s}, y_{i,s} + 1, z$ and $z + 1$ into A_{s+1}.

The “cancellation” rule, which is present in the proof of Theorem 4.8 (Downey, Slaman [8]), in this case it will be necessary to note the effect of the requirements of R_j (where $j < e$) on satisfying the requirement P_e, but not to describe the basic module itself for P_e.

3. Verification of Lemmas

Lemma 1: Suppose that ψ_e is total and $(\forall x) (\Psi_e(A \cup \{x\}; x) \downarrow)$. Then $(\exists y) \neg((\Psi_e(A \cup \{y\}; y) = A(y))$. Thus, the requirement R_e is satisfied.

Proof. Suppose otherwise. We show that B is computable.

Note that since we only consider the satisfaction of the basis module for R_e (that is, we do not take into account the effect of the requirements R_j and P_j (where $j < e$) on the satisfaction of the requirement R_e), it is obvious that conditions (i), ..., (iv) are met.

(i) All the $x_{i,s}$ eventually become permanently defined, that is $\lim_s x_{i,s} = x_i$ exists with $x_i \notin A$.

(ii) Once x_k is defined at stage t, $(\forall s > t) (u(x_k, e, t) = u(x_k, e, s) = u(e, x_k))$.

(iii) $(\forall i) (x_{i+1} > \max \{u(e, x_k) : k \leq i\})$.

(iv) It can be effectively recognized, when (i) occurs.

Two cases are possible:

(a) $(\exists m) (\forall k > m) [x_k - 2 \notin A]$;

(b) $(\forall m) (\exists k > m) [x_k - 2 \in A]$.

For both cases ((a) and (b)), it will be proved that B is computable (and thus, the assumption that Lemma 1 is false will lead to a contradiction with the supposition of non-computability of B).

Now, if (a) holds, we prove that B is computable.

If conditions (i), ..., (iv) are satisfied, we show how to compute B (that is, the characteristic function of the set B; remind that we often identify the set B with its characteristic function).

Let $f \downarrow x$ denotes the restriction of f to arguments $y < x$, and $A \downarrow x$ denotes $\chi_A \downarrow x$.

Let s_0 be such a stage that $B \downarrow m + 1 = B_{s_0} \downarrow m + 1$ and $A \downarrow x_{m+1} = A_{s_0} \downarrow x_{m+1}$.

Let $q \in \omega$ and $q > m$. Effectively compute a stage s so that x_{q+1} is defined, that is $x_{q+1} = x_{q+1,s}$ (in that case, in fact, $s > s_0$).

Then x_q is active, $x_q \in A$ and since x_{q+1} is the final value of the $q + 1$-th follower, the computations of $u(x_j, e, s)$ are true for all $j \leq q$.

In this case $q \in B \iff q \in B_s$, because otherwise it would lead to the fact that $x_q - 2$
would have entered the set, contrary to our assumption that case (a) holds.

Now suppose that case (b) holds. Let us prove that in this case also B is computable.

If conditions (i), ..., (iv) are fulfilled, we show how to compute B.

Let $q \in \omega$. Effectively compute such a stage s and a number p so that $p = \mu z \ (z \geq q \ \& \ x_{z-2} \in A \ \& \ x_{z+1} = x_{z+1,s})$.

Then x_p is active, $x_p \notin A$ and since x_{p+1} is the final value of the $p + 1$-th follower, then $u(x_j, e, s)$ computations are true for all $j \leq p$. In this case $q \in B \iff q \in B_e$, since otherwise (that is, if q enters B after the stage s) this will lead to the entry p into A and satisfaction of the requirement R_e, which will contradict the initial assumption that Lemma 1 is false.

Lemma 1 is prooved.

Lemma 2: Suppose that W_e is an infinite set. Then $(\exists z) \ (z \in W_e \ \& \ z \in A)$. Thus, the requirement P_e is satisfied.

Proof. Suppose otherwise.

We show that B is computable.

Let $\hat{r}(e) = \lim_n \hat{r}(e, s)$.

Although the use of this function in the description of the basis module for P_e is not necessary, an indication of this function clearly shows the effect of the requirements R_j (where $j \leq e$) on the satisfaction of the requirements P_e when constructing the set A.

Let t_0 be such that $(\forall s \geq t_0) \hat{r}(e, s) = \hat{r}(e)$.

Then it is obvious, that all the $y_{i,s}$ become permanently defined (i.e., $\forall i \exists (t \geq t_0) \ (\forall s) (y_{i,t} = y_{i,s} = y_i)$) with $y_i \notin A$.

In fact, if there existed k such that $y_k \in A$, then, by construction, there would exist z such that $z \in W_e \cap A$.

Assuming the opposite of the statement of the proposition, we show how B can be computed.

Let $q \in \omega$. Find $t \geq t_0$ such that y_q is permanently defined. Then $q \in B \iff q \in B_1$, since otherwise q’s entry into B would meet P_e.

Lemma 2 is prooved.

4. Conclusion

Note that the coherence of constructions to satisfy the requirements R_e and P_e (for all e) is not difficult, since satisfying the requirements R_e and P_e (for all e) requires a finite number of steps. We also note that the indicated method of constructing the set A (based on the constructions for the basic modules) will result in the set $A \cap \omega_{ev}$ being T-equivalent to the set $A \cap \omega_{od}$.

These remarks allow us to complete the proof of the theorem. ■

Note that it follows from the above theorem that below any noncomputable c.e. degree there is an infinite number of noncomputable c.e. degrees with the abovementioned property (since the degree a (mentioned in the theorem), containing a simple set, is a noncomputable c.e. degree).
On Initial Segments of Turing Degrees Containing Simple T-Mitotic but not wtt-Mitotic Sets

References

 Hydra T-իրենից, թաղ նե wtt-իրենից բազմաբազմություն պարզապետության հատուկանություն բնորոշման մեջ

Անվան և կենտրոն

Հարցվում է հնարավոր և պարզապետական բազմաբազմություն համար

E-mail: arsennokatsian@gmail.com

Անվան

Հնարավոր է T-իրենից բազմաբազմության համար, թաղ wtt-իրենից բազմաբազմության համար a բազմաբազմություն պարզապետության հատուկանություն բնորոշվում է, ուր կոնդակում է b բազմաբազմություն պարզապետության հատուկանություն բնորոշվում է, թաղ a բնորոշվում է, եթե $b \leq a$ և b-ը ավելի է, թե դա T-իրենից թաղ կոմբինացված

danio.png
О некоторых свойствах тьюринговых степеней, содержащих простые T-митотические множества, не являющиеся wtt-митотическими

Arsen A. Мокациан

Институт проблем информатики и автоматизации НАН РА
e-mail: arsemokatsian@gmail.com

Аннотация

Исследуются свойства рекурсивно перечислимых (р.п.) тьюринговых степеней, содержащих множества, которые обладают свойством -митотического разбиения, но не имеют wtt-митотического разбиения. Доказано, что для любой нерекурсивной (р.п.) степени a существует нерекурсивная (р.п.) степень b, такая что $b \leq a$ и b содержит простое T-митотическое множество, которое не является wtt-митотическим.

Ключевые слова: митотическое множество, T-сводимость, wtt-сводимость, простое множество, сцепленная степень.